

Difference Points for System Calls

Revision 3.6

Revision History

 Rev. Date Updates / Remarks

2.2 28-February-18 the first version

2.7 29-November-

18

Updated section 2.12 regarding the argv/envp limit for execve()
system call.
 Added differences in relation to glibc.

2.8 08-February-19 This revision covers VEOS v2.0.3 or later.
Changed the format of top page.
Added section 6.24 for Non-atomic I/O
Added section 6.25 for prlimit system call and RPM command
behavior for VE.

2.9 15-April-19 This revision covers VEOS v2.1 or later.
Updated section-2.12 related to environment variables which
are always set in execve() system call.
The references related to differences w.r.t musl-libc are
removed.

3.0 May-2020 This revision covers VEOS v2.5 or later.
Updated section-6 for difference point of the limitation of RSS.

3.1 July-2020 This revision covers VEOS v2.6.2 or later.
Added Section for 2.19 times() system call.
Added Section for 2.20 acct() system call
Added section-6.25 for the signal related difference point
Updated section 6 for the maximum number of command line
arguments and environment variables.

3.2 Sep-2020 This revision covers VEOS v2.7 or later.
Updated section 6 to describe the detail of non-atomic I/O
Moved the difference relating to an argument specifying length
from section 3 to section 6.
Fix errors section 2.19 for acct() system call

3.3 May-2021 This revision covers VEOS v2.8.1 or later.
Updated section 6 to describe the behavior of system calls
related to zombie processes.

3.4 Dec-2021 This revision covers VEOS v2.10.1 or later.
Updated section-2.11 to remove the limit to number of
environment variables in execve() system call.
Updated Section 6-26 to remove maximum envp variable limit.

3.5 March-2023 This revision covers VEOS v3.0.2 or later.
Updated Section 2.19 for acct() system call to delete structure
for ve_acct and to add structures for ve_acct_v15 and
ve_acct_v16.

3.6 June-2023 This revision covers VEOS v3.1 or later.
Updated Section 2.19 for acct() system call to delete a note for
data structure in glibc header.

1. Introduction
This document aims at listing down all the difference between Linux system calls and the VEOS specific
system call implementation.

All the system calls are categorized as follows:

1. Supported system calls

Here the list of supported system calls are provided which have complete support in VEOS. Also the
differences with respect to Linux system call is also provided.

2. Partially supported system calls
Here the list of partially supported (supported with limitations) are provided. Also the differences with
respect to Linux system call is also provided.

3. Not supported system calls
Here the list of system calls which are not supported in VEOS is provided.

2. Supported system calls
Following is the list of system calls which are completely supported in VEOS.

SL No System calls Differences (Yes / No)

1. Fork Yes

2. Waited Yes

3. sched_getaffinity Yes

4. sched_setaffinity Yes

5. sched_yield No

6. Getpgrp No

7. Getpid No

8. Getpgid No

9. Getppid No

10. Gettid No

11. Getsid No

12. Setsid No

13. Setpgid No

14. Time No

15. Gettimeofday No

16. clock_getres No

17. Vfork No

18. Exit No

19. Execve Yes

20. Sysinfo No

21. sched_rr_get_interval Yes

22. Acct No

23. clock_gettime Yes

24. Kill No

25. Tkill No

26. Tgkill No

27. rt_sigqueueinfo No

28. rt_tgsigqueueinfo No

29. Sigaction No

30. Sigprocmask Yes

31. Sigreturn No

32. Sigsuspend No

33. Sigaltstack Yes

34. Sigpending No

35. Signalfd Yes

36. signalfd4 Yes

37. rt_sigtimedwait No

38. lookup_dcookie No

39. Semtimedop No

40. Recvmmsg Yes

41. timer_getoverrun No

42. Sendmsg Yes

43. name_to_handle_at No

44. mq_getsetattr No

45. open_by_handle_at No

46. inotify_add_watch No

47. timerfd_settime No

48. timerfd_gettime No

49. Newfstatat No

50. inotify_rm_watch No

51. ioprio_set No

52. ioprio_get No

53. Ppoll No

54. Getsockopt No

55. Poll No

56. epoll_ctl No

57. Getgroups No

58. Socketpair No

59. fanotify_mark No

60. Readlink No

61. epoll_create1 No

62. fanotify_init No

63. Semctl No

64. Recvmsg No

65. Writev No

66. Msgctl No

67. Msgrcv No

68. Recvfrom Yes

69. Mount No

70. Truncate No

71. Getpeername No

72. mq_timedreceive Yes

73. accept4 No

74. Sendto No

75. Accept No

76. mq_timedsend Yes

77. utimensat No

78. epoll_pwait No

79. splice No

80. getresgid No

81. utime No

82. mq_open No

83. symlink No

84. statfs No

85. renameat No

86. epoll_wait No

87. utimes No

88. symlinkat No

89. flock No

90. futimesat No

91. connect No

92. msgsnd No

93. readlinkat No

94. setdomainname No

95. getdents No

96. mq_notify No

97. uname No

98. setsockopt No

99. fcntl No

100. setgroups No

101. syslog No

102. access No

103. openat No

104. write No

105. pwritev No

106. pwrite64 No

107. sethostname No

108. creat No

109. fstatfs No

110. open No

111. stat No

112. bind No

113. setuid No

114. fstat No

115. getcwd No

116. timer_gettime No

117. setgid No

118. ftruncate No

119. close No

120. pause No

121. socket No

122. eventfd2 No

123. fdatasync No

124. vhangup No

125. fadvise64 No

126. inotify_init No

127. epoll_create No

128. select No

129. unlink No

130. pselect6 No

131. dup No

132. dup2 No

133. pipe No

134. nanosleep No

135. chown No

136. lchown No

137. fchown No

138. lseek No

139. mkdir No

140. tee No

141. chroot No

142. ioperm No

143. alarm No

144. mknodat No

145. setreuid No

146. sync No

147. getgid No

148. sync_file_range No

149. mknod No

150. fsync No

151. rename No

152. dup3 No

153. faccessat No

154. lstat No

155. readahead No

156. getsockname No

157. preadv No

158. pread64 No

159. read No

160. mq_unlink No

161. semget No

162. linkat No

163. setresuid No

164. eventfd No

165. fchmodat No

166. umask No

167. fchmod No

168. fchownat No

169. readv No

170. link No

171. rmdir No

172. setfsgid No

173. setfsuid No

174. chmod No

175. chdir No

176. geteuid No

177. pipe2 No

178. unlinkat No

179. setregid No

180. msgget No

181. listen No

182. fchdir No

183. semop No

184. getresuid No

185. inotify_init1 No

186. iopl No

187. fallocate No

188. getegid No

189. mkdirat No

190. setresgid No

191. getuid No

192. getdents64 No

193. timerfd_create No

194. umount2 No

195. timer_delete No

196. shutdown No

197. syncfs No

198. pivot_root No

199. mmap Yes

200. munmap No

201. mprotect No

202. msync Yes

203. shmget Yes

204. shmat No

205. shmctl Yes

206. process_vm_readv No

207. process_vm_writev No

208. grow Yes

209. getrusage Yes

210. sendfile No

211. timer_settime No

212. Sendmmsg Yes

213. brk No

214. shmdt No

215. fgetxattr Yes

216. flistxattr Yes

217. fremovexattr Yes

218. fsetxattr Yes

219. getxattr Yes

220. lgetxattr Yes

221. listxattr Yes

222. llistxattr Yes

223. lremovexattr Yes

224. lsetxattr Yes

225. removexattr Yes

226. setxattr Yes

227. sysve VEOS specific

228. times Yes

1. waitid()
1. If a child is sent a terminating signal, example SIGFPE, SIGTERM, etc., SIGKILL is sent instead

of the actual one. This leads to WTERMSIG(status) value = SIGKILL (9) instead of the actual one
when the child process is waited upon in the parent.

2. fork()
1. Copy-on-write is not supported in VEOS. When a child process is created, it is allocated new

memory.

2. After a process exhausts its maximum limit of open file descriptors, subsequent invocation of

fork() system call will fail with errno set to EAGAIN.

3. After changing the default root directory of the calling process to that specified in path with

chroot() system call, subsequent invocation of fork() will fail with errno set to EAGAIN.

3. sched_getaffinity()
1. If pid 1 is given as an argument it will return -1 and errno ESRCH will be set.

4. sched_setaffinity()
1. If pid 1 is given as an argument it will return -1 and errno ESRCH will be set.

5. sched_rr_get_interval()
1. If pid 1 is given as an argument it will return -1 and errno ESRCH will be set.

6. sigaltstack()
1. Minimum alternate stack size will be VE_MINSIGSTKSZ (533400). If user give alternate stack size

less than 512KB ENOMEM will be returned.

2. If an attempt is made to register alternate stack with invalid stack pointer then sigaltstack() will

fail with EFAULT.

7. Signalfd()/signalfd4
 If an attempt is made to invoke signalfd() with invalid “mask” argument then it return EFAULT

instead of EINVAL.

8. mmap()
1. Following flags of mmap() are not supported in VE and would return EINVAL

a. MAP_GROWSDOWN

b. MAP_HUGETLB

c. MAP_LOCKED

d. MAP_NONBLOCK

e. MAP_POPULATE

2. In VEOS huge page mappings are not configured via huge tlb file system.

3. Only two page size are supported for mmap in which smallest mmap page size is 2MB and

largest page size is 64MB.

4. New flags are added MAP_2MB, MAP_64MB to get memory mapping over specific page size.

5. If VE process does not specify page size in mmap flags then default page size considered

depends upon executable page size.

6. MAP_STACK is supported and will be used with grow() system call else the behavior is

undefined. No physical mappings are done in this flag.

7. If user tries to do mmap() with MAP_FIXED flag in between the range of 96TB-97TB the it would

fail as this is reserved for VE process address space.

8. In case of file backed mmap() with MAP_SHARED flag, VE memory is shared by VE processes of

the same VE node. VE memory contents with underlying file are synced using msync(),

munmap() system call or during VE process exit. Because of this architecture, the change of VE

memory contents is not visible from a VE process of another VE node or a VH process, until VE

process invokes msync() or munmap(), or terminates.

9. In case of file backed mmap() with MAP_SHARED flag, the contents of the file are transferred to

VE memory when mmap request comes firstly. The contents of the file are not synced to VE

memory if mmap request for already mapped region comes again. So, the change of the

underlying file by a VE process of another VE or a VH process is not visible from the VE process.

10. In case of file backed mmap() with MAP_SHARED flag, if VE process has mapped the file(say

mapping 1) and then it invokes ftruncate() to decrease the file size then while accessing

mapping 1, SIGBUS will not be generated. But new mapping to same file will give SIGBUS if user

tries to access beyond file size.

11. Even if MAP_NORESERVE flag is provided by user then VE physical pages are allocated as of size

inputted based upon the available VE memory.

12. If the file is mapped with different page size, then VE memory is not shared.

13. VEOS handles A POSIX shared memory object created by shm_open() in the same manner with a

file backed memory. So, it can be used as a shared memory in one VE node. A swap area

corresponding to it is required to preserve the contents.

14. In VE accessing memory mapped with file "/dev/zero" will give SIGBUS but in Linux it is

successful. So for all type of file whose size is zero will always result in SIGBUS when mapped

and accessed in VE.

15. In case of file backed mmap() the contents of the file are not synced to VE memory if write

request for the mapped file comes. So, the change of the underlying file is not visible, even if the

VE process mapping the file writes the same file using write() system call.

9. shmget()
1. SHM_HUGETLB flag is not supported in VEOS and if VE process use this flag in system call then

EINVAL will be returned

2. Only two page size are supported for shmget in which smallest shm page size is 2MB and largest

page size is 64MB.

3. New flags are added SHM_2MB, SHM_64MB to create shared memory segment with specific

page size.

4. Even if SHM_NORESERVE flag is provided by user then VE physical pages are allocated as of size

of segment based upon the available VE memory.

5. Minimum size alignment of shared memory segment is not as per SHMLBA (4KB). The size

alignment depends upon SHM_2MB/SHM_64MB flags.

6. The VE memory is shared by VE processes of the same VE node. The VE memory and VH

memory are not synced. So, the contents of VE memory are not visible from a VE process of

another VE node or VH process.

7. If a process 1 creates a shared memory with 64 MB page size and other process 2 invokes

shmget() with 2 MB page size then shmget() would success as segment is already created. But

while attaching this segment in process 2 address returned would be 64 MB aligned (as per the

segment page size defined while creation).

10. grow()
grow() system call is used to extend the stack size of VE process or thread.

1. There are two input arguments in this system call.

2. System call returns EINVAL if invalid address is specified.

3. This system call will be invoked via function epilogue/prologue. It is not recommended that VE

process will explicitly invoke this system call otherwise behavior is undefined.

11. execve()
int execve(const char *filename, char *const argv[], char *const envp[]);

1. After successful execve() system call, argv[0] in the new loaded VE binary will always contains

the absolute path of VE binary. If caller of execve() provide some data in argv[0] then it will be

lost. So, the caller of execve() have to strictly follow the convention of passing binary name in

argv[0]. Further arguments to VE program in argv[1] to so on.

Note: This is applicable to all the exec() family functions.

2. VE process can execute new VE program or VH program. When VE process executes new VE
program, VE process needs to specify VE program with the first argument of execve() system call.
When VE process executes VH program, VE process’s information such as resource limit is
discarded, even if VH program executes VE program, again.

3. execve() system call’s second argument “argv” is an array of argument strings passed to the new
program. In VE the maximum number of command line arguments which can be passed are 512.
When execve() is invoked with “argv” greater than 512 strings, system call will fail with E2BIG
errno.

And execve() system call’s third argument “envp” is an array of strings, conventionally of the form
key=value, passed to the new program as environment. In addition to the user provided
environment variables there are 6 default environment variables namely VE_EXEC_PATH,
LOG4C_RCPATH, HOME, PWD, VE_LD_ORIGIN_PATH and VE_NODE_NUMBER which are
always passed to the new program.

4. Passing an invalid file having executable permission to execve() system call will result in
termination of whole thread group.

12. msync()
1. In VE flag MS_INVALIDATE is not supported and return error as EINVAL. We don’t have any

support to invalidate other mappings of the same file.

13. shmclt()
1. Following flags of shmctl() are not supported in VE and would return EINVAL

a. SHM_LOCK

b. SHM_UNLOCK

14. getrusage()
Following fields of rusage structure are not maintained in VE and would return 0.

- struct timeval ru_stime;

- long ru_minflt;

- long ru_majflt;

15. chroot()
Note

❖ After changing the default root directory of the calling process to that specified in path with chroot() system
call, subsequent invocation of fork(), vfork() and clone() system calls will fail with errno set to EAGAIN.

-

16. sigprocmask()
In VEOS SIGCONT signal cannot be masked. The request to mask SIGCONT signal through sigprocmask(2)

will be ignored and sigprocmask(2) will return success to user program.

17. clock_gettime()
If argument "clock_id" is the ID of INIT process CPU-time clock, then failure is returned with errno set to

EINVAL, as VEOS does not have an executing INIT process.

18. times()
Following fields of times structure are not maintained in VE and would return 0.

- tms_stime

- tms_cstime

19. acct()
This is a definition of ve_acct_v15 (for VE10 and VE20) and ve_acct_v16 (for VE30) structure. The

structures are the process accounting information structure that will be written to the VE process

accounting file when VE process accounting is enabled.

The unit of the field ac_etime and field ac_utime are ticks. The ticks mean 10 ms in Linux, so you can

obtain the time in seconds by dividing the value of the field ac_etime or the field ac_utime by 100.

The value of the field ac_version will be 15 for VE10 and 16 for VE30. When the structure is changed,

this value is changed.

Accounting structure for VE10 and VE20:

struct ve_acct_v15 {
 char ac_flag; /*!< Flags */
 char ac_version; /*!< Always set to ACCT_VERSION */
 unsigned short int ac_tty; /*!< Control Terminal */
 unsigned int ac_exit; /*!< Exitcode */
 unsigned int ac_uid; /*!< Real User ID */
 unsigned int ac_gid; /*!< Real Group ID */

 unsigned int ac_pid; /*!< Process ID */
 unsigned int ac_ppid; /*!< Parent Process ID */
 unsigned int ac_btime; /*!< Process Creation Time */
 float ac_etime; /*!< Elapsed Time */
 comp_t ac_utime; /*!< User Time */
 comp_t ac_stime; /*!< System Time */
 comp_t ac_mem; /*!< Average Memory Usage */
 comp_t ac_io; /*!< Chars Transferred */
 comp_t ac_rw; /*!< Blocks Read or Written */
 comp_t ac_minflt; /*!< Minor Pagefaults */
 comp_t ac_majflt; /*!< Major Pagefaults */
 comp_t ac_swaps; /*!< Number of Swaps */
 char ac_comm[ACCT_COMM]; /*!< Command Name */
 unsigned int ac_sid; /* session ID */
 unsigned int ac_timeslice; /* timeslice [μs] */
 unsigned short int ac_max_nthread; /* max number of thread */
 unsigned short int ac_numanode; /* the number of NUMA node */
 double ac_total_mem; /* VE's total memory usage in clicks */
 unsigned long long ac_maxmem; /* VE's max memory usage [kb] */
 unsigned long long ac_syscall; /* the number of systemcall */
 double ac_transdata; /* data transfer amount between VE-VH [kb] */
 unsigned long long ac_ex; /* Execution count */
 unsigned long long ac_vx; /* Vector execution count */
 unsigned long long ac_fpec; /* Floating point data element count */
 unsigned long long ac_ve; /* Vector elements count */
 unsigned long long ac_l1imc; /* L1 instruction cache miss count */
 unsigned long long ac_vecc; /* Vector execution in microseconds */
 unsigned long long ac_l1mcc; /* L1 cache miss in microseconds */
 unsigned long long ac_l2mcc; /* L2 cache miss in microseconds */
 unsigned long long ac_ve2; /* Vector elements count 2 */
 unsigned long long ac_varec; /* Vector arithmetic execution in microseconds */
 unsigned long long ac_l1imcc; /* L1 instruction cache miss in microseconds */
 unsigned long long ac_vldec; /* Vector load execution in microseconds */
 unsigned long long ac_l1omcc; /* L1 operand cache miss in microseconds */
 unsigned long long ac_pccc; /* Port conflict in microseconds */
 unsigned long long ac_ltrc; /* Load instruction traffic count */
 unsigned long long ac_vlpc; /* Vector load packet count */
 unsigned long long ac_strc; /* Store instruction traffic count */
 unsigned long long ac_vlec; /* Vector load element count */
 unsigned long long ac_llvml; /* LLC vector load cache fill line count */
 unsigned long long ac_llvme; /* LLC vector load cache miss element count */
 unsigned long long ac_fmaec; /* Fused multiply add element count */
 unsigned long long ac_ptcc; /* Power throttling in microseconds */
 unsigned long long ac_ttcc; /* Thermal throttling in microseconds */

 unsigned long long ac_corebitmap; /* core bitmap */
 unsigned long long padding_1[5]; /* padding */
 unsigned long long padding_2[5]; /* padding */
};

Accounting structure for VE30:

struct ve_acct_v16 {
 char ac_flag; /*!< Flags */
 char ac_version; /*!< Always set to ACCT_VERSION */
 unsigned short int ac_tty; /*!< Control Terminal */
 unsigned int ac_exit; /*!< Exitcode */
 unsigned int ac_uid; /*!< Real User ID */
 unsigned int ac_gid; /*!< Real Group ID */
 unsigned int ac_pid; /*!< Process ID */
 unsigned int ac_ppid; /*!< Parent Process ID */
 unsigned int ac_btime; /*!< Process Creation Time */
 float ac_etime; /*!< Elapsed Time */
 comp_t ac_utime; /*!< User Time */
 comp_t ac_stime; /*!< System Time */
 comp_t ac_mem; /*!< Average Memory Usage */
 comp_t ac_io; /*!< Chars Transferred */
 comp_t ac_rw; /*!< Blocks Read or Written */
 comp_t ac_minflt; /*!< Minor Pagefaults */
 comp_t ac_majflt; /*!< Major Pagefaults */
 comp_t ac_swaps; /*!< Number of Swaps */
 char ac_comm[ACCT_COMM]; /*!< Command Name */
 unsigned int ac_sid; /* session ID */
 unsigned int ac_timeslice; /* timeslice [μs] */
 unsigned short int ac_max_nthread; /* max number of thread */
 unsigned short int ac_numanode; /* the number of NUMA node */
 double ac_total_mem; /* VE's total memory usage in clicks */
 unsigned long long ac_maxmem; /* VE's max memory usage [kb] */
 unsigned long long ac_syscall; /* the number of systemcall */
 double ac_transdata; /* data transfer amount between VE-VH [kb] */
 unsigned long long ac_ex; /* Execution count */
 unsigned long long ac_vx; /* Vector execution count */
 unsigned long long ac_fpec; /* Floating point data element count */
 unsigned long long ac_ve; /* Vector elements count */
 unsigned long long ac_l1imc; /* L1 instruction cache miss count */
 unsigned long long ac_vecc; /* Vector execution in microseconds */
 unsigned long long ac_l1mcc; /* L1 cache miss in microseconds

 unsigned long long ac_l2mcc; /* L2 cache miss in microseconds */
 unsigned long long ac_ve2; /* Vector elements count 2 */
 unsigned long long ac_varec; /* Vector arithmetic execution in microseconds */
 unsigned long long ac_l1imcc; /* L1 instruction cache miss in microseconds */
 unsigned long long ac_vldec; /* Vector load execution in microseconds */
 unsigned long long ac_l1omcc; /* L1 operand cache miss in microseconds */
 unsigned long long ac_pccc; /* Port conflict in microseconds */
 unsigned long long ac_ltrc; /* Load instruction traffic count */
 unsigned long long ac_vlpc; /* Vector load packet count */
 unsigned long long ac_strc; /* Store instruction traffic count */
 unsigned long long ac_vlec; /* Vector load element count */
 unsigned long long ac_llvml; /* LLC vector load cache fill line count */
 unsigned long long ac_llvme; /* LLC vector load cache miss element count */
 unsigned long long ac_fmaec; /* Fused multiply add element count */
 unsigned long long ac_ptcc; /* Power throttling in microseconds */
 unsigned long long ac_ttcc; /* Thermal throttling in microseconds */
 unsigned long long ac_corebitmap; /* core bitmap */
 unsigned long long ac_l3vsac; /* VLD+SLD elements accessing L3 count */
 unsigned long long ac_l3vsme; /* L3 VLD+SLD miss-hit element count */
 unsigned long long ac_l3vsml; /* L3 VLD+SLD miss-hit cache line count */
 unsigned long long ac_llvsme; /* LLC miss-hit element count */
 unsigned long long ac_llvsml; /* LLC miss-hit cache line count */
 unsigned long long padding_2[5]; /* padding */
};

3. Partially Supported System Calls
Following is the list of system calls which are partially supported in VEOS.

SL No System calls Differences (Yes / No)

1 Clone Yes

2 futex Yes

3 prlimit Yes

4 getrlimit Yes

5 setrlimit Yes

6 wait4 Yes

7 clock_nanosleep Yes

8 timer_create Yes

9 getitimer Yes

10 madvise Yes

11 mlock Yes

12 munlock Yes

13 mlockall Yes

14 munlockall Yes

15 setitimer Yes

16 Ioctl Yes

17 exit_group Yes

18 getcpu Yes

19 quotactl Yes

20 set_tid_address Yes

21 ustat Yes

Note

❖ Partially supported syscalls exit_group(), futex(), getcpu(), quotactl(), set_tid_address() and ustat() are
supported only for calling by “glibc” library which is provided as a part of VEOS. Direct invocation by user
program is not supported.

1. clone()

1. Clone() has a partial support in VEOS.

2. In clone() only the following combination of flags are supported:

SL No Flags

1. SIGCHLD

2. CLONE_PARENT_SETTID | SIGCHLD

3. CLONE_CHILD_SETTID | CLONE_CHILD_CLEARTID | SIGCHLD

4. CLONE_VM | CLONE_VFORK | SIGCHLD

5.
CLONE_VM | CLONE_FS | CLONE_FILES | CLONE_SYSVSEM | CLONE_SIGHAND |
CLONE_THREAD | CLONE_SETTLS | CLONE_PARENT_SETTID |
CLONE_CHILD_CLEARTID | 0

3. Other than the above mentioned flags, none of the other flags mentioned in the man-page of clone() is

supported. Clone() will return <EINVAL> for all unsupported flags.

4. In the flags, no signal can be specified other than SIGCHLD. As mentioned in point-2 and point-3, clone
will return <EINVAL> is any other signal is specified.

5. The maximum number of threads created for a process is 64 (including main process). Clone() will
return < EAGAIN> if attempt is made to create more than 64 threads.

6. The maximum number of threads supported by VEOS is 1024. Clone() will return < EAGAIN> if attempt

is made to create more than 1024 threads.

7. The raw system call for clone() in VEOS is as follows:

int clone(int flags, void *stack, pid_t *ptid, pid_t *ctid, void *tls,

void *guard_ptr)

As such, the fn and arg arguments of the clone() wrapper function are omitted.

8. clone() is VEOS-specific and should not be used in programs intended to be portable.

Note

❖ Clone() libc wrapper and raw system call is meant to be used by the library.
❖ Clone() libc wrapper and raw system call is not supposed to be used directly be the end-user.

The end-user needs to use the high-level system calls and APIs available like fork(), vfork() and
pthread_create() etc.

9. Clone() system calls returns the following errors

a. EAGAIN: If more than 64 threads per process are created.
b. EAGAIN: If more than 1024 threads (VEOS system wide) are created.
c. EAGAIN: If more than 256 process (VEOS system wide) are created.

Note

❖ Refer the limitations of getrlimit() / setrlimit() for RLIMIT_NPROC handling in VEOS

10. After a process exhausts its maximum limit of open file descriptors, subsequent invocation of clone()

system call will fail with errno set to EAGAIN.

11. After changing the default root directory of the calling process to that specified in path with chroot()

system call, subsequent invocation of clone() will fail with errno set to EAGAIN.

2. futex()

1. futex() has a partial support in VEOS.

2. The futex() system call only supports the following futex operations.

SL No Flags

1. FUTEX_WAIT

2. FUTEX_WAKE

3. FUTEX_REQUEUE

4. FUTEX_CMP_REQUEUE

5. FUTEX_WAIT_BITSET

6. FUTEX_WAKE_BITSET

7. FUTEX_PRIVATE_FLAG

8. FUTEX_CLOCK_REALTIME

3. Rest of the futex operations mentioned in the futex man-page are not supported by the futex system

call. Futex() will return <EINVAL> for all unsupported futex operations.

4. Robust futex operations are not supported. Only normal futex calls are supported with above mentioned

set of operations.

5. Priority inheritance futex (PI-futex) are not supported in VEOS.

6. futex() is VEOS-specific and should not be used in programs intended to be portable.

Note

❖ Libc does not provide a wrapper for this system call
❖ Bare futexes are not intended as an easy-to-use abstraction for end-users.
❖ Users of futex system call are assumed to be assembly literate and are aware of the source of

the futex user space library and kernel space implementation.
❖ To achieve process and thread synchronization and locking, use higher-level programming

abstractions implemented via futexes including POSIX semaphores and various POSIX threads
synchronization mechanisms (mutexes, condition variables, read-write locks, and barriers).

3. prlimit() / getrlimit() / setrlimit()
1. prlimit() has a partial support in VEOS.
2. The following flags have different behavior in VEOS:

SL
No

Flags Behavior

1. RLIMIT_CPU As per the manpage, If the process continues to consume
CPU time, it will be sent SIGXCPU once per second until
the hard limit is reached. In VEOS, SIGXCPU will be sent
only once.

2. RLIMIT_NPROC In VEOS hard limit and soft limit is not maintained for
RLIMIT_NPROC. Prlimit() will show the values of the VH
host kernel and will also will set the value to the VH host
kernel.

However in VEOS, we have the following limit for process
and threads
- Max number of process = 256
- Threads per process = 64
- Max number of threads = 1024

VEOS do not consider RLIMIT_NPROC value during
creation of tasks (process/threads). For all privileged
process (with CAP_SYS_RESOURCE capability) or
unprivileged process, the limit will be as per the above
defined values (i.e. 256, 64 and 1024).

3. RLIMIT_NICE This is not supported and EINVAL is returned

4. RLIMIT_RTPRIO This is not supported and EINVAL is returned

3. If pid 1 is given as an argument it will return -1 and errno ESRCH will be set.

4. wait4()
1. wait4() has a partial support in VEOS.

2. Following flags are not supported in wait4

SL No Flags

1. __WCLONE

2. __WALL

3. wait4 is not supported with above flags. This is due to limitation of clone() system call due to which

we cannot create “clone” children. [A “clone” child is one which delivers no signal, or a signal other
than SIGCHLD to its parent upon termination].

4. If a child is sent a terminating signal, example SIGFPE, SIGTERM, etc., SIGKILL is sent instead
of the actual one. This leads to WTERMSIG(status) value = SIGKILL (9) instead of the actual one
when the child process is waited upon in the parent.

5. clock_nanosleep ()
1. clock_nanosleep() has a partial support in VEOS.

2. In clock_nanosleep() only the following flags are supported:

SL No Flags

1. CLOCK_REALTIME

2. CLOCK_MONOTONIC

3. CLOCK_PROCESS_CPUTIME_ID flag is unsupported. Clock_nanosleep () will return EINVAL for

CLOCK_PROCESS_CPUTIME_ID flag.

6. timer_create()
1. timer_create() has a partial support in VEOS.

2. The timer_create() system call only supports the following flags.

SL No Flags

1. CLOCK_REALTIME

2. CLOCK_MONOTONIC

3. Rest of the flags mentioned in the timer_create() man-page are not supported by the timer_create()

system call. Timer_create() will return EINVAL for all unsupported flags.

7. getitimer()
1. getitimer() has a partial support in VEOS.

2. The getitimer() system call only supports the following flag.

SL No Flags

1. ITIMER_REAL

3. Rest of the flags mentioned in the getitimer() man-page are not supported by the getitimer () system

call. Getitimer() will return EINVAL for all unsupported flags.

8. madvise()
1. madvise() system call will always return success in VEOS because paging is not supported in VEOS,

but ported application may invoke madvise() system call.

9. mlock()
1. mlock() system call will always return success in VEOS because paging is not supported in VEOS, but

ported application may invoke mlock() system call.

10. munlock()
1. munlock() system call will always return success in VEOS because paging is not supported in VEOS,

but ported application may invoke munlock() system call.

11. mlockall()
1. mlockall() system call will always return success in VEOS because paging is not supported in VEOS,

but ported application may invoke mlockall() system call.

12. munlockall()
1. munlockall() system call will always return success in VEOS because paging is not supported in VEOS,

but ported application may invoke munlockall() system call.

13. setitimer()
1. setitimer() has a partial support in VEOS.

2. The setitimer() system call only supports the following flag.

SL No Flags

1. ITIMER_REAL

3. Rest of the flags mentioned in the setitimer() man-page are not supported by the setitimer() system

call. Setitimer() will return EINVAL for all unsupported flags.

14. ioctl()
1. ioctl() has a partial support in VEOS.
2. On VEOS any non-tty request using ioctl() system call will not be served. In this case ioctl() will

fail with errno set to EINVAL.

4. Not Supported System Calls

Following is the list of system calls which are not supported in VEOS.

SL No System calls Error returned upon system call invocation

1 get_robust_list ENOTSUP

2 set_robust_list ENOTSUP

3 unshare ENOTSUP

4 set_thread_area ENOTSUP

5 get_thread_area ENOTSUP

6 prctl ENOTSUP

7 setpriority ENOTSUP

8 getpriority ENOTSUP

9 sched_get_priority_max ENOTSUP

10 sched_get_priority_min ENOTSUP

11 sched_setparam ENOTSUP

12 sched_getparam ENOTSUP

13 sched_setscheduler ENOTSUP

14 sched_getscheduler ENOTSUP

15 clock_settime EPERM

16 settimeofday EPERM

17 add_key ENOTSUP

18 request_key ENOTSUP

19 keyctl ENOTSUP

20 reboot ENOTSUP

21 personality ENOTSUP

22 sysfs ENOTSUP

23 setns ENOTSUP

24 io_setup ENOTSUP

25 io_destroy ENOTSUP

26 io_getevents ENOTSUP

27 io_submit ENOTSUP

28 io_cancel ENOTSUP

29 perf_event_open ENOTSUP

30

ptrace

Note: This is different from ve_ptrace(). See
section-5

ENOTSUP

31 remap_file_pages ENOTSUP

32 set_mempolicy ENOTSUP

33 get_mempolicy ENOTSUP

34 migrate_pages ENOTSUP

35 kcmp ENOTSUP

36 fexit_module ENOTSUP

37 mremap ENOTSUP

38 adjtimex ENOTSUP

39 clock_adjtime EPERM

40 mbind ENOTSUP

41 move_pages ENOTSUP

42 uselib ENOTSUP

43 _sysctl ENOTSUP

44 create_module ENOTSUP

45 get_kernel_syms ENOTSUP

46 query_module ENOTSUP

47 nfsservctl ENOTSUP

48 getpmsg ENOTSUP

49 putpmsg ENOTSUP

50 afs_syscall ENOTSUP

51 tuxcall ENOTSUP

52 security ENOTSUP

53 epoll_ctl_old ENOTSUP

54 epoll_wait_old ENOTSUP

55 vserver ENOTSUP

56 swapon ENOTSUP

57 swapoff ENOTSUP

58 capget
Compilation Error when header file “capability.h”
is used

59 capset
Compilation Error when header file “capability.h”
is used

60 vmsplice ENOTSUP

5. VE Ptrace System Call

1. For VE program ptrace() system call is not supported it will return –ENOTSUP.

2. Only VE debugger can use ptrace() system call by invoking ve_ptrace() instead of ptrace().

3. Traced VE processes should be present on a single node.

4. Single VE debugger can’t trace multiple VE processes of different VE nodes.

5. New ptrace request “PTRACE_STOP_VE” has to be invoked by VE debugger to stop the VE

process/thread when debugger comes out of any wait() system call family.

ve_ptrace(PTRACE_STOP_VE, pid, 0, 0);

6. Followings are the requests that are not supported:

SL No Ptrace Request

1. PTRACE_SYSEMU

2. PTRACE_SYSEMU_SINGLESTEP

3. PTRACE_O_TRACEEXEC

4. PTRACE_O_TRACEVFORKDONE

7. Ptrace request PTRACE_GETFPREGS/ PTRACE_SETFPREGS will get/set the vector registers.

8. VE Debugger can’t invoke PTRACE_TRACEME as it has special handling in VE environment.

6. Generic VEOS Difference Points / Limitations

1. Consider the following difference point if trap corresponding to FE_DIVBYZERO is disabled.

When a child process does an integer divide-by-zero computation, example (5/0), the Floating point
exception is not generated, and hence child does not get killed. Due to this, correct termination status
of child is not received in parent while doing wait4 (or any other wait family system call).

However in Linux, integer divide-by-zero computation raises floating point exception even if the trap
corresponding to FE_DIVBYZERO is disabled, therefore if child process terminated by such
exception will always returns expected termination status.

2. In VE architecture it may happen that VE task will be terminated while executing more than 3 signal
handler in nested manner.

3. In VEOS, when core pattern (/proc/sys/kernel/core_pattern) contains pipe (|) as first symbol then core

file will be created at current working directory of VE process. The file name of core file will be

"core.xxxx.ve" if the pid is xxxx.

4. In VEOS, while creating coredump only patterns “%”, “p”, ”h” are supported if mentioned in core_pattern

file. Symbols other than this will be ignored.

5. If a VE process is getting traced and an attempt is made to read si_code after setting breakpoint etc.

si_code will be set to TRAP_BRKPT always (si_code populated for SIGTRAP signals like
TRAP_TRACE, TRAP_BRANCH, TRAP_HWBKPT will not be set.

6. If user has performed integer divide by zero or floating-point divide by zero, while signal handler is
registered for SIGFPE signal then si_code will be set to FPE_FLTDIV for both cases. For Linux, si_code
FPE_INTDIV is set when integer divide by zero is performes and si_code FPE_FLTDIV is set when
floating-point divide by zero is performed.

7. When a VE process receives any terminating signal then to end user it will appear that process is
terminated using SIGKILL because for every terminating signal we terminate the pseudo process using
SIGKILL signal.

8. In multiprocess environment where parent sends terminating signal to child and wait to get the status
using WIFSIGNALED() then parent will always receive SIGKILL as terminating signal when it gets the
status as pseudo child process is terminated with SIGKILL(as mentioned in above point) and also
WIFSIGNALED() (wait() syscall) is offloaded to Linux kernel.

9. When VEOS fails to setup the stack frame for the signal handler due to insufficient stack space, VEOS
generates SIGSEGV signal for the VE process and terminates the corresponding pseudo process with
SIGKILL. In this case, to end user it will appear that VE process is terminated using SIGKILL because
a program which executed the VE process (e.g. shell) gets the exit status of the pseudo process as VE
process’s one.

10. In VEOS when signal information is received by a signal handler (invoked due to some exception) then
“si_addr” filed if siginfo struct always stores some relevant instruction address (ICE register value).
However in linux, for some exceptions si_addr stores the address of instruction where the exception
occurred while for some it stores the address where fault has occurred.

According to VE HW spec, depending on the exception cause, this register may hold the address of

the instruction which caused the exception, or the address of a branch instruction lastly executed before

the exception was reported.

In case of non-masked arithmetic exception as mentioned below, ICE saves the address of the

instruction to cause the exception

- Divide by zero

- floating point overflow exception

- Floating-point underflow exception

- Fixed-point overflow exception

- Invalid operation exception

- Inexact exception,

In case of following exception, ICE saves the address of a branch instruction lastly executed before the
exception was reported.
- Memory protection exception
- Missing page exception
- Missing space exception
- Memory access exception
- Host memory protection exception
- Host missing page exception
- Host missing space exception
- Host memory access exception
- I/O Access Exceptions
- Illegal data format exception
- Illegal instruction format exception

11. In VEOS syscalls read() and pread64(), futex(),recvfrom(),recvmsg(), recvmmsg(), sendmsg(),
sendmmsg(), sendto(), accept(), accept4(), connect() can never be restarted automatically after the
interruption with signal.

12. In VEOS if a VE process receives unrecoverable h/w exception, and VE process has installed a signal
handler for signal mapped to h/w exception then signal handler will be invoke once and later VE process
will be terminated with the signal to which exception has been mapped. In Linux process generates
exception and user has installed handler for the same, then after signal handler is executed same
instruction which caused fault will be executed and hence signal handler will be invoked indefinitely.

13. In VEOS SIGCANCEL signal generated for a thread through pthread_cancel() API may not deliver

instantly, if the thread is executing the blocking system call like sleep(2) etc. (means thread may not

cancel/exit instantly) . The delivery of SIGCANCEL will be deferred until the execution of blocking system

call etc.

14. The maximum number of requests that can be handled by VEOS concurrently is 1056. The requests

comprises of:

- Requests from VE tasks (process / threads)

- Requests from ported RPM commands

- Requests from GDB

Note

❖ Maximum number of VEOS worker threads = 1056
❖ Maximum number of VE tasks = 1024

15. If logging (log4c) is enabled, VE process gets 6 as the first file descriptor number when allocated using

open() / socket() like system calls. FDs from 3 to 5 are reserved for VEOS. If logging (log4c) is disabled,

VE process gets 5 as the first file descriptor number when allocated using open() / socket() like system

calls. FDs from 3 to 4 are reserved for VEOS.

16. In VEOS architecture, if user demands or try to fetch the current state of any task, then user is required

to use the ve rpm specific commands rather than using proc fs interface as on Linux environment.

Similarly in order to fetch VE process execution information, user need to use VE specific rpm

commands(ps, etc) rather than VH rpm commands.

17. In VE architecture information regarding the current executing task (self) by accessing /proc/self/

directory is not supported. For e.g. in VE architecture accessing soft link /proc/self/exe will not

return binary path for current executing VE task.

18. If the system call is interrupted by a signal handler, like nanosleep/pselect veos returns -1, sets errno
to EINTR, and writes the remaining time into the structure pointed to by “rem” unless “rem” is NULL
But due to off-loading & context switch overheads in veos design the the "rem" precision in
microseconds will vary on VEOS.

19. VE architecture supports Large page(2MB) and Huge Page(64MB) whereas corresponding VH is

having a page size of 4KB.

20. In VEOS, SIGCONT signal is non-maskable (Like SIGKILL and SIGSTOP). Any request to mask
SIGCONT signal through system call (that updated signal mask set of task) like sigprocmask(2),

sigaction(2), pselect(2)/pselect6(2),ppoll(2),epoll_pwait(2) etc. will be simply

ignored and success will be returned to the user program.

21. set-user-id bit and set-group-id bit of VE programs do not take effect i.e. the effective user ID is not
changed to the owner of the VE program file even if set-user-id bit is set. Similarly the effective group
ID is not changed to the group of the VE program file even if set-group-id bit is set.

22. In VE architecture a program can write maximum up to 2GB-4KB buffer data through write series
system calls like write(2), writev(2) etc. Hence maximum return value of write series system calls on
VE architecture would be 2GB-4KB. Maximum value will not be dependent on page size of VE
architecture.

23. According to POSIX standards, I/O is intended to be atomic to ordinary files, pipes, and FIFOs. Atomic

means that all the bytes from a single operation that started out together end up together, without
interleaving from other I/O operations. However, VE architecture supports both ATOMIC & NON-
ATOMIC I/O mode. By default, NON-ATOMIC mode is enabled on VE in order to reduce memory
consumption at VH side. ATOMIC I/O mode can be enabled by exporting VE_ATOMIC_IO=1. When
users enable accelerated I/O by exporting VE_ACC_IO=1, I/O is not atomic. System call and atomicity
in each mode is mentioned in below table.

System all non atomic I/O
mode
(default)

Atomic I/O mode
(VE_ATOMIC_IO=1)

Accelerated I/O
(VE_ACC_IO=1)

read, pread64, readv, preadv
write, pwrite64, writev ,pwritev

Non-atomic if the
size is more than
64MB

Atomic regardless of
the size

Non-atomic if the size
is more than 8MB

sendto (*1)
recvfrom (*2)

Non-atomic if the
size is more than
64MB

Atomic regardless of
the size

Non-atomic if the size
is more than 64MB

*1 wrapper function send() invokes sendto() system call.

*2 wrapper function recv() invokes recvfrom() system call.

24. For VE, the specification about resource limits of VE and corresponding pseudo process with ve_exec

command, VH prlimit command, VE prlimit() system call and ported prlimit command is mentioned in
below table:

Categories ‘ve_exec’
command

VH prlimit
command

VE prlimit
command

VE prlimit
system call

Category-1:

FSIZE, LOCKS,
MSGQUEUE,
NPROC,
MEMLOCK,
RTTIME, NOFILE

When we run a new
VE process it would
inherit all the
resource limit of the
corresponding
pseudo process
(ve_exec).

Suppose VE
process is running
and we change
the resource limit
of pseudo process
by VH prlimit
command, then it
is also reflected
for corresponding
VE process.

Suppose VE
process is running
and we change
the resource limit
of VE process by
VE prlimit
command, then it
is reflected also
for corresponding
pseudo process.

Suppose VE
process is running
and we change
the resource limit
of VE process by
VE prlimit system
call, then it is also
reflected for
corresponding
pseudo process.

Category-2:

AS, CPU, CORE,
DATA, RSS,
SIGPENDING

When we run a new
VE process it would
inherit the resource
limit of the
corresponding
pseudo process.

Suppose VE
process is running
and we change
the resource limit
of pseudo process
by VH prlimit
command, then it
is not reflected for
corresponding VE
process.

Suppose VE
process is running
and we change
the resource limit
of VE process by
VE prlimit
command, then it
is not reflected for
corresponding
pseudo process.

Suppose VE
process is running
and we change
the resource limit
of VE process by
VE prlimit system
call, then it is not
reflected for
corresponding
pseudo process.

Category-3:

STACK

STACK limit for new
VE process will
either be set as
“unlimited” or the
values passed
through
“VE_STACK_LIMIT”
environment
variable.

Suppose VE
process is running
and we change
the resource limit
of pseudo process
by VH prlimit
command, then it
is not reflected for
corresponding VE
process.

Suppose VE
process is running
and we change
the resource limit
of VE process by
VE prlimit
command, then it
is not reflected for
corresponding
pseudo process.

Suppose VE
process is running
and we change
the resource limit
of VE process by
VE prlimit system
call, then it is not
reflected for
corresponding
pseudo process.

• NICE and RTPRIO resource limits are not supported for VE.

• RSS limit has no effect on VH with ulimit, prlimit command or prlimit system call.

25. In VE architecture signal can only be delivered to VE task when its state become RUNNING and

executed on VE core.

As per this behaviour if signal is pending to be delivered for a VE task, it will remain in its pending queue

when simultaneously VE task’s state is updated to WAIT (due to invocation of blocking system call). In

this case generated signal will be delivered to VE task once the task’s state is changed to RUNNING after

the processing or interruption of blocking system call.

26. The maximum number of command line arguments passed to a VE program is 512. If it is more than

512, a VE program fails to start.

However, the maximum number of environment variables passed to a VE program is not limited. The

number of environment variables include six additional environment variables VE_EXEC_PATH,

LOG4C_RCPATH, HOME, PWD, VE_LD_ORIGIN_PATH and VE_NODE_NUMBER which are always

passed to the VE program.

27. In VE environment behavior of system call may differ for the system calls that takes size/length/count

size_t (unsigned int) as an argument for buffer length. For example, recvfrom(2) takes size_t len as an

input argument to system call

ssize_t recvfrom(int sockfd, void *buf, size_t len, int flags,

 struct sockaddr *src_addr, socklen_t *addrlen);

A user application can pass a negative value (for example -1) as a len argument when it invoke

recvform() system call. In case of Linux, Linux kernel converts negative value to huge positive value

and truncates it to MAX_RW_COUNT. System call returns success.

However, in case of VE, these system calls may fail for handling the negative value. This is because

system call handler need to allocate local buffer and send/receive data from VE memory based on the

specified value. Error code will be EFAULT, ENOMEM or ENOSPC when system call fails.

Similar deviation in system call behaviour may be observed in below system calls
- recvmmsg()/sendmmsg()
- mq_timedreceive()/mq_timedsend()
- lookup_dcookie()
- getsockopt()/setsockopt()
- readv()/writev()
- sendto()
- epoll_pwait()
- epoll_wait()
- setgroups()
- read()/write()
- getcwd()
- pread64()/pwrite64()
- getdents64()

28. In VEOS a VE task may get abnormal return value (-1) with errno=EINVAL while setting/getting the

information for another zombie VE task, with no active threads in the thread group, through system

calls like clock_gettime(), sched_setaffinity() etc.

