
© NEC Corporation 2018

VEOS High Level Design

Revision 4.1

NEC

1. About this document

2. What is VEOS

3. Basic features of VEOS
- Components

- Process management

- Memory management

- User mode DMA and communication register

- System call

- Signal

- Feature list (Fundamental features)

- Feature list (inter process communication)

- Specification list(VE3)

- Specification list(VE1)

- Notice

4. Extended features
- Support of VE partitioning mode (VEOS NUMA mode)

- Support of offloading programing model

- Accelerated IO

- Asynchronous IO

- Partial process swapping

- Virtual machine support

5. Revision History

Table of contents

© NEC Corporation 20183

About this document

◆ This document describes the high level design of VEOS

◆ This revision covers VEOS v3.0.2 or later.

© NEC Corporation 20184

VEOS is the software running on Linux/Vector Host, providing OS
functionality for VE programs running on Vector Engine

What is VEOS

VEOS features:

VE program loading

System call handling

VE process management

VE memory management

Signal handling

OS commands supporting

gdb, ps, free, top, sar etc.

VEOS

VE
program

Vector
Host

Vector
Engine

Two aspects of VEOS
From VE prog. : Operating System
From Linux : Agent for VE program

No OS jitter on Vector Engine
VEOS works completely on Linux/x86.

Linux OS

Utilizing
Linux
capability

Basic features of VEOS

© NEC Corporation 20186

Components
◆ VEOS

◼ VEOS daemon
• Daemon which manages one VE
• It is responsible for process management, memory

management, etc.

◼ Pseudo process (ve_exec command)
• Process which manages one VE process

• It loads program into VE process and handles
system call request from VE process

◼ IVED
• Daemon for inter-VE resource management

◼ VEMM daemon
• Daemon which communicates with InfiniBand

driver

◼ Commands
• Ported commands such as “ps” and “free”

◼ Debugger
• Ported debugger (gdb)

◆ VE driver
◼ Driver which provides resource accessibility

to VEOS daemon and pseudo process

◆ VE process
◼ Process which executes user program

◼ The following libraries may be linked
• Standard C library

• VE specific libraries

OS-less

SW

Kernel
Area

User
Area

VHHW

VEOS

VEMM
daemon

IVED

Linux

VE driver

VEOS
daemon

pseudo
process

VE

commands debugger

VE process

Standard C library

VE specific libraries

User program

© NEC Corporation 20187

Process management
◆ Multiprocessing and multithreading are

supported

◆ Identification of VE process
◼ A VE process is identified by PID of the corresponding

pseudo process.

◆ Process state
◼ VEOS maintains the state of VE processes

independently from Linux
• running, wait, etc.

◆ Scheduling
◼ VEOS chooses a VE core to execute a thread of a VE

process, when the thread is started

◼ VEOS schedules threads of VE processes using
round-robin scheduling on each VE core

◼ Migration of a thread between VE cores may occur
when a VE core has no thread to execute

◆ Relationship of parent process and child
processes
◼ VEOS maintains the relationship of VE processes, in

order to inherit resource limit, CPU affinity, etc.
• VEOS maintains the relationship within one VE

VE
Core 0

Process 1
Thread1

Process 2
Thread1

Process 3
Thread1

Process 1
Thread2

Process 2
Thread2

Core 1

Tasks for core 0 Tasks for core 1

VH

VEOS

VEOS
daemon

Pseudo
Process

VH

VEOS

VEOS
daemon

Pseudo
Process

VE
process

same pid

VE

schedule

© NEC Corporation 20188

Memory management
◆ Virtual address management

◼ Text and data of executable binary, heap and stack are located at
the fixed address

◼ Other areas such as anonymous memory are located at address
allocated dynamically

◼ VE memory virtual address space is subset of virtual address
space of pseudo process

◼ Anonymous memory and file backed memory are supported

◼ Data of file backed memory is transferred between VE and VH by
system calls such as mmap(), munmap(), msync() and exit()

◆ Physical VE memory management
◼ VEOS allocates physical memory when executable binary or

shared library are loaded, or anonymous or file backed memory
are requested

◼ Demand paging and copy-on-write are not supported, because
HW doesn't support precise exceptions

◼ Anonymous memory and file backed memory share physical
memory between VE processes if shared mapping is requested

◼ Anonymous memory and file backed memory may share physical
memory between VE processes if private mapping with read-only
protection is requested

◼ Text of executable binary and shared library are private file
backed memory with read only protection. So, they shares
physical memory between VE processes

◼ Growing heap and stack is supported

◆ Page size
◼ 64 MB / 2MB

◼ The page size of text and data of executable, heap, and stack are
equal to the alignment of an executable binary

◼ The page size of text and data of shared library is equal to the
alignment of shared library

◼ The default page size of anonymous memory or file backed
memory is equal to the alignment of executable binary. VE
program can specify page size when it requests them

© NEC Corporation 20189

User mode DMA and communication register
◆ User mode DMA

◼ VE process can use user mode DMA in order to transfer
data between memory described below

1. VE memory assigned to a VE process and VE memory assigned
to another VE process

2. VH memory and VE memory assigned to a VE process

◼ A VE process can use two DMA descriptor tables

◼ User mode DMA is performed while one or more threads
of the VE process are running on VE cores

◼ User mode DMA is stopped while all threads of the VE
process are not running on VE cores

◼ Target and source address of DMA is specified using
special address named VE host virtual address

◼ VEOS sets the mapping from VE host virtual address to
memory

◆ Communication register (CR)
◼ CRs are 64-bit registers used for control of exclusive

execution or synchronous operation between threads of a
process or MPI processes

◼ VE process can access CR of local VE and remote VE
• Access to CR of local VE
– CR access instruction can be used

– CR is specified using special address named effective CR
address

• Access to CR of remote VE
– Host memory access instructions can be used

– CR is specified using VE host virtual address which is also used
for user mode DMA

◼ VEOS sets the mapping from effective CR address or VE
host virtual address to actual CR

Notice: User mode DMA and CR are used by the MPI
library or other system libraries.
Low level API for user mode DMA is available.
CR is not intended to be used directly from user
programs.

© NEC Corporation 201810

System call
◆ VE process offloads system call onto

VH
◼ Pseudo process handles request of

system call

◼ Pseudo process requests VEOS daemon
or Linux if needed

◼ System call is handled with pseudo
process’s privilege

◆ Sequence of system call
(simple case)

1. VE process stores system call number
and arguments to VH memory

2. VE process stops the VE core and raise
an interrupt

3. Pseudo process handles system call

4. Pseudo process sends unblock request
with return value to VEOS daemon

5. VEOS daemon stores return value to the
register of the VE core and starts the VE
core

VE

VE process

 ･･･

ret=read(fd,buf,size);
 ･･･

VH

VEOS

Pseudo process System call number
and arguments

VEOS
daemon Return value

Unblock request
with return value

© NEC Corporation 201811

Signal
◆ Signal sent by another process

◼ Signal handler of pseudo process
sends a signal request to VEOS

◼ VEOS delivers signal to VE
process when VE process
executed on VE core next time

◼ Pseudo process is killed by
SIGKILL if VE process is
terminated by signal

◆ Signal due to HW exception
◼ Pseudo process detects HW

exception and sends a signal
request to VEOS

◼ VEOS delivers signal to VE
process when VE process
executed on VE core next time

◼ If VE process registers a signal
handler corresponding to non-
recoverable HW exception, VE
process is terminated after
execution of the signal handler

Signal handler

VE processpseudo process

text segmenttext segment

Signal

Waiting for system
call or HW
exception

signal handler
is invoked

signal handler
signal handler
is invoked

deliver

VE processpseudo process

text segmenttext segment Detect
exception

signal handler

signal handler
is invoked

Exception

deliver

© NEC Corporation 201812

Feature list (Fundamental features)
Category Feature Design Description

Program
loader

File format ELF, DWARF Program loader recognizes ELF file and loads text and data to VE.

Dynamic linking Supported Dynamic linking of shared library is supported.

Dynamic loading Supported Dynamic loading of shared library is supported. (dlopen(), dlsym(), etc)

Alignment of segment 2MB / 64MB Alignment of segment is decided on linking.

Process
management

Multiprocessing Fork-exec model VE program can create a process using fork() system call. VE program can
execute a new VE program using execve() system call.

Multithreading POSIX thread VE program can create threads using POSIX API.

Scheduling Round robin on
each VE core

Threads are executed in circular order without priority. Threads in blocked state
are skipped.

Preemption Supported If the time slice is expired, a context switch occurs, and a next thread starts to run
on VE core.

Time slice 1 second The period of time for which a thread of a process is allowed to run.

Timer interval 100 milliseconds The interval between invocations of the timer handler of the scheduler at VH side.

Memory
management

Virtual address space Supported Process has own virtual address space.

Memory allocation Dynamic Memory is allocated when VE program is loaded. Growing heap and stack are
supported. Allocating anonymous or file-backed memory is also supported.

File backed memory Supported Data of the file is transferred between VE and VH by system calls.

Demand paging Not supported Physical memory is allocated when virtual memory is allocated.

Copy on write Not supported Private readable and writable area has own physical memory.

Sharing physical
memory

Supported Anonymous memory and file backed memory share physical memory under
certain conditions.

Page size 2MB / 64MB Page size of segments of executable binary and page size of shared library is
equal to the alignment of them. VE program can specify page size of anonymous
or file backed memory.

Input and
output

File system, network,
etc

Supported Offloaded to Linux.

© NEC Corporation 201813

Feature list (inter process communication)

✓ Supported - Not supported

IB HCA: InfiniBand HCA

*1 robust mutex and pi mutex are not
supported
*2 VH-VE SHM is a feature to allow VE
processes to transfer data to or from
System V shared memory created at VH
side
*3 VESHM is a feature to allow VE
processes to transfer data between VE
processes
*4 VEMM is a feature to allow the IB
driver to access VE memory and to
allow VE programs to access IB HCA
*5 These features are used by the MPI
library or other system libraries. They
are not intended to be used directly
from user programs

VE
process

VE
process

VE
process

VE
process

VH
process

IB HCA

VE VE

VH

(1)

(2)

(3) (4)

Feature (1)
Inside VE

(2)
VE-VE

(3)
VE-VH

(4)
VE-IB

Function name
example

System V shared
memory

✓ - - - shmget

POSIX shared memory ✓ - - - shm_open

Spin lock ✓ - - - pthread_spin_init

Mutex ✓(*1) - - - pthread_mutex_init

Read write lock ✓ - - - pthread_rwlock_init

Condition variable ✓ - - - pthread_cond_init

Barrier ✓ - - - pthread_barrier_init

Unnamed semaphore ✓ - - - sem_init

System V semaphore ✓ ✓ ✓ - semget

Named semaphore ✓ ✓ ✓ - sem_open

System V message queue ✓ ✓ ✓ - msgget

POSIX message queue ✓ ✓ ✓ - mq_open

UNIX socket ✓ ✓ ✓ - socket

Pipe, Fifo ✓ ✓ ✓ - pipe, mkfifo

Signal ✓ ✓ ✓ - kill

VH-VE SHM *2 - - ✓ - vh_shmat

VESHM *3 *5 ✓ ✓ - - -

CR *5 ✓ ✓ - - -

VEMM *4 *5 - - - ✓ -

© NEC Corporation 201814

Specifications list(VE3)

*1 A CR page consists of 32 CRs

Item Condition Per VE Per VE process Note

Maximum number of VE
process

- 256 processes - -

Maximum number of threads - 1,024 threads 64 threads

Maximum number of
connections VEOS daemon
accepts

- 1,056 - A connection between a VEOS
daemon and a pseudo process
is established per a VE thread.
A connection between a VEOS
and a ported command / gdb
and is established per a request.

Maximum size of memory
assigned to VE process

96GB memory model 98,176MB 98,176MB A 64MB-page is reserved for
zeroed page.
A 64MB–page is reserved for
synchronization.

Maximum size of accessible
remote VE memory

16 cores model 15360GB 15360GB The value will be changed when
the number of cores is changed.

Descriptor table of user mode
DMA

- - 2 descriptor tables -

Maximum number of CR page
for threads *1

- - 1 page -

Maximum number of local CR
pages for MPI *1

16 cores model 16 pages 3 pages The value will be changed when
the number of cores is changed.

Maximum number of remote
CR pages for MPI *1

- - 32 pages -

© NEC Corporation 201815

Specifications list(VE1)

*1 A CR page consists of 32 CRs
*2 49,086MB when VE is connected to SX-Aurora TSUBASA A100-1 model
*3 24,510MB when VE is connected to SX-Aurora TSUBASA A100-1 model
*4 A 2MB-page is reserved for synchronization when VE is connected to SX-Aurora TSUBASA A100-1 model

Item Condition Per VE Per VE process Note

Maximum number of VE
process

- 256 processes - -

Maximum number of threads - 1,024 threads 64 threads

Maximum number of
connections VEOS daemon
accepts

- 1,056 - A connection between a VEOS
daemon and a pseudo process
is established per a VE thread.
A connection between a VEOS
and a ported command / gdb
and is established per a request.

Maximum size of memory
assigned to VE process

48GB memory model 49,024MB *2 49,024MB *2 A 64MB-page is reserved for
zeroed page.
A 64MB–page is reserved for
synchronization. *4

24GB memory model 24,448MB *3 24,448MB *3

Maximum size of accessible
remote VE memory

8 cores model 894GB 894GB The value will be changed when
the number of cores is changed.

Descriptor table of user mode
DMA

- - 2 descriptor tables -

Maximum number of CR page
for threads *1

- - 1 page -

Maximum number of local CR
pages for MPI *1

8 cores model 24 pages 3 pages The value will be changed when
the number of cores is changed.

Maximum number of remote
CR pages for MPI *1

- - 32 pages -

© NEC Corporation 201816

1. The number of threads of VE processes which run on VE should be

less than or equal to the number of available VE cores, in order to

achieve best performance

2. VE process can execute new VE program or VH program. When VE

process executes new VE program, VE process needs to specify VE

program with the first argument of execve() system call. When VE

process executes VH program, VE process’s information such as

resource limit is discarded, even if VH program executes VE program,

again

3. Almost all of system calls, standard C library functions, Linux’s

commands and debugger commands are supported. But, some of

them are not supported

4. The size of text and data area on VE3 is up to 48GB for compatibility

with VE1.

Notice

Extended features

© NEC Corporation 201818

Support of VE partitioning mode (VEOS NUMA mode)

◆ VE supports the partitioning mode in which the VE cores, last level caches

and its main memory are partitioned into two segments

◆ VEOS treats two segments in partitioning mode as two NUMA nodes in

order to utilize existing system call interfaces and commands

◆ VEOS assigns cores and memory to VE processes considering the locality

Normal Partitioning mode
(VEOS NUMA mode)

C1 C2C0 C3

C4 C5 C6 C7 Memory

C0 C1 C2 C3

CORE

Memory

Memory

C4 C5 C6 C7
NUMA node #1

NUMA node #0

Memory

© NEC Corporation 201819

Support of offloading programing model

◆ “VH call” offloads scalar

operations from VE to x86

◆ “VE offload” offloads compute

kernels from x86 to VE

VH call is synchronous API VE offload is asynchronous API

VH call VE offload

VH
Vector
Engine

VE
program

x86
program

VH
Vector
Engine

x86
program

VE
program

OSOS

© NEC Corporation 201820

Accelerated I/O

◆ The throughput and the latency of

read/write family are improved

◼ read, pread, readv, preadv

◼ write, pwrite, writev, pwritev

◆ Accelerated I/O transfer data between

VE and VH by VE DMA engine

◼ VE DMA engine directly accesses the

buffer at VH side.

◆ To disable Accelerated I/O, the

following environment variable setting is

needed

(In case of bash)
export VE_ACC_IO=0

VH

VE

DMA
engine

Mem

Proc

Mem Buffer

Disk

© NEC Corporation 201821

Asynchronous I/O

◆ Asynchronous I/O for VE (VE AIO) enables VE programs to do their

tasks during I/O system call operation

◆ VE AIO doesn't need any VE resource while the I/O operation on VH is

in progress.

VE procVH proc

ve_aio_read()

AIO result

read() syscall

Linux

read data

:Sync

:Async

ve_aio_query()

ve_aio_query()

Do any tasks

© NEC Corporation 201822

Partial process swapping

◆ It swaps out a part of VE memory which contains local data of
stopped VE processes to VH memory or files

◼ Freed VE memory can be used to execute another programs

◆ A part of VE memory which contains MPI data of VE process remains
in VE memory

◼ The communication between MPI processes completes without error

• In case of swapping to VH
memory, VEOS swap out VE
memory to huge pages allocated
from VH.

• In case of swapping to files, VEOS
swap out VE memory to files in
distributed file system or local file
system. Huge pages are also used
as buffer to transfer contents of
memory.

Local data

MPI data

Swap-in

Swap-out

VE memoryVH memory

Huge Pages

Swap-out

Swap-in

File

File system

© NEC Corporation 201823

Virtual machine support

Users can exclusively use virtual machine environments including VE.

◆ You can configure all or a part of VE nodes for a virtual machine environment.

◆ Each virtual machine occupies one VE.(※)

◼ Technology: KVM PCI passthrough

◆ There are no Aurora-specific changes to virtual machine management, you can manage virtual machine with

the ease of use of OSS
◼ Management software/Virtualization program: libvirt/qemu-kvm,

VEOS VE
program

Vector
Host

Linux OS
Vector
Engine

VEOS VE
prog.

VH

Linux OS

VE

VM#1
VEOS VE

prog.

VH

Linux OS

VE

VM#2
VEOS VE

prog.

VH

Linux OS

VE

VM#3
VEOS VE

prog.

VH

Linux OS

VE

VM#4

(※) VE doesn't support ATS(Address Translation
service) and performance of program running on
multi VE nodes is not sufficient. So, it's
recommended to operate on one VE per virtual
machine.

Revision History

© NEC Corporation 201825

Revision History
Rev. Date Update

1.8 28th Feb. 2018 The first version

1.9 14th May 2018 • Updated the introduction of VEOS to clarify that it is running on Linux/VH
• Added VH-VE SHM which is a new feature of VEOS 1.1 release

1.10 11st July 2018 • Mentioned migration of a thread between VE cores occurs after VEOS 1.2.1
• Updated the description of maximum size of memory
• Incorporated the change of the number of DMA descriptor table done by VEOS 1.2

1.11 12nd Sep. 2018 • Updated the description of user mode DMA because Low level API for user mode
DMA is provided as an experimental feature

• Updated the feature list because VE programs can use VH-VE SHM
• Added fifo to the feature list
• Improved figures

2.0 5th Dec. 2018 • Removed notice relating to kernel headers because kernel headers are provided as a
part of VEOS 2.0 or later

2.1 9th Feb. 2019 • This revision covers VEOS v2.0.1 or later.
• Changed the format of top page.
• Added information which shows target VEOS versions of this document.

3.0 22nd Apr. 2019 • This revision covers VEOS v2.1 or later.
• Updated “What is VEOS”
• Mentioned Pseudo process is ve_exec command
• Low level API for user mode DMA is not experimental feature currently
• Described extended features

3.1 19th June 2019 • Added descriptions of VEOS NUMA mode
• Described the feature of partial process swapping to file

© NEC Corporation 201826

Revision History (cont.)
Rev. Date Update

3.2 Sep. 2019 • This revision covers VEOS v2.2 or later.
• Updated memory address map

3.3 Jan. 2020 • This revision covers VEOS v2.3 or later
• Accelerated I/O is enabled by setting VE_ACC_IO=1
• Added the partial process swapping which is a new feature

3.4 Feb. 2020 • Corrected typographical errors

3.5 Jul. 2020 • This revision covers VEOS v2.6.2 or later
• Added the description of partial process swapping to file (Page 21)

3.6 Sep. 2020 • This revision covers VEOS v2.6.2 or later
• Formatted this document

3.7 Mar. 2022 • This revision covers VEOS v2.11 or later
• Updated address mapping for RDMA support (Page 8)

4.0 Mar. 2023 • This revision covers VEOS v3.0.2 or later
• Updated address mapping for VE3 support (Page 9)
• Update as per the specification of VE3 (Page 14)
• Added the description of virtual machine support (Page 22)

4.1 Feb. 2024 • Correcting the heading(Page 14,15)

	スライド 1: VEOS High Level Design
	スライド 2: Table of contents
	スライド 3: About this document
	スライド 4: What is VEOS
	スライド 5: Basic features of VEOS
	スライド 6: Components
	スライド 7: Process management
	スライド 8: Memory management
	スライド 9: User mode DMA and communication register
	スライド 10: System call
	スライド 11: Signal
	スライド 12: Feature list (Fundamental features)
	スライド 13: Feature list (inter process communication)
	スライド 14: Specifications list(VE3)
	スライド 15: Specifications list(VE1)
	スライド 16: Notice
	スライド 17: Extended features
	スライド 18: Support of VE partitioning mode (VEOS NUMA mode)
	スライド 19: Support of offloading programing model
	スライド 20: Accelerated I/O
	スライド 21: Asynchronous I/O
	スライド 22: Partial process swapping
	スライド 23: Virtual machine support
	スライド 24: Revision History
	スライド 25: Revision History
	スライド 26: Revision History (cont.)

