
© NEC Corporation 20191

How to Use
Fortran Compiler for Vector Engine

2nd Edition November 2019

Table of Contents

 How to Use Fortran Compiler

- Performance Analysis

- Debugging

 Automatic Vectorization

- Extended Vectorization Features

- Program Tuning

- Tuning Techniques

- Notes on Using Vectorization

 Automatic Parallelization and OpenMP Fortran

- OpenMP Parallelization

- Automatic Parallelization

- Behavior of Parallelized Program

- Tuning Parallelized Program

- Notes on Using Parallelization

The information disclosed in this document is the property of NEC Corporation (NEC) and/or its licensors. NEC
and/or its licensors, as appropriate, reserve all patent, copyright and other proprietary rights to this document,
including all design, manufacturing, reproduction, use and sales rights thereto, except to the extent said rights are
expressly granted to others.
The information in this document is subject to change at any time, without notice.

In this document, “parallel processing” stands for automatic parallelization of compiler or shared memory parallel
processing with OpenMP Fortran.

All product, brand, or trade names in this publication are the trademarks or registered trademarks of their
respective owners.

© NEC Corporation 20194

NEC Fortran Compiler for Vector Engine

▌Product Name: NEC Fortran Compiler for Vector Engine

Conformed Language Standards

• ISO/IEC 1539-1:2004 Programming languages – Fortran

• ISO/IEC 1539-1:2010 Programming languages – Fortran (Partially)

•OpenMP Version 4.5

Major Features

•Automatic Vectorization

•Automatic Parallelization and OpenMP Fortran

•Automatic Inline Expansion

How to Use Fortran Compiler

© NEC Corporation 20196

Usage of Fortran Compiler

$ nfort -mparallel -O3 a.f90 b.f90

… Compile and link Fortran program(a.f90 b.f90)

High

Low

-fopenmp … Enable OpenMP Fortran

-mparallel … Enable automatic parallelization

-O4 … Automatic vectorization with the highest level optimization

-O3 … Automatic vectorization with high level optimization

-O2 … Automatic vectorization with default level optimization

-O1 … Automatic vectorization with optimization without side-effects

-O0 … No vectorization and optimization

Options to control the level of
automatic vectorization and
optimization.

Parallelization controlling options.

Do not specify these options when you do

not use shared memory parallelization.

© NEC Corporation 20197

Example of Typical Compiler Option Specification

$ nfort a.f90

$ nfort –O4 a.f90 b.f90

$ nfort –mparallel –O3 a.f90

$ nfort –O4 –finline-functions a.f90

$ nfort –O0 -g a.f90

$ nfort –g a.f90

$ nfort –E a.f90

$ nfort –fsyntax-only a.f90

Compiling and linking with the default

vectorization and optimization.

Compiling and linking with the highest

vectorization and optimization.

Compiling and linking using automatic

parallelization with the advanced

vectorization and optimization.

Compiling and linking using automatic

inlining with the highest vectorization and

optimization.

Compiling and linking with generating

debugging information in DWARF without

vectorization and optimization.

Compiling and linking with generating

debugging information in DWARF with the

default vectorization and optimization.

Performing preprocessing only and

outputting the preprocessed text to the

standard output.

Performing only grammar analysis.

© NEC Corporation 20198

Program Execution

$ nfort a.f90 b.f90

$./a.out

$./c.out < data2.in

$ nfort –mparallel –O3 a.f90 b.f90

$ export OMP_NUM_THREADS=4

$./a.out

$./b.out data1.in

$ env VE_NODE_NUMBER=1 ./a.out

Executing a compiled program.

Executing a program getting input file

and parameter from command line.

Executing with redirecting an input file

instead of standard input file.

Executing a parallelized program with

specifying the number of threads.

Executing with number of VE.

Performance Analysis

© NEC Corporation 201910

Performance Information of Vector Engine

▌PROGINF

Performance information of the whole program.

The overhead to get performance information is slightly.

▌FTRACE

Performance information of each function.

It is necessary to re-compile and re-link the program.

If functions are called many times, the overhead to get
performance information and the execution time may increase.

© NEC Corporation 201911

PROGINF

$ nfort –O4 a.f90 b.f90 c.f90
$ ls a.out
a.out
$ export VE_PROGINF=DETAIL
$./a.out

******** Program Information ********
Real Time (sec) : 11.329254
User Time (sec) : 11.323691
Vector Time (sec) : 11.012581
Inst. Count : 6206113403
V. Inst. Count : 2653887022
V. Element Count : 619700067996
V. Load Element Count : 53789940198
FLOP count : 576929115066
MOPS : 73492.138481
MOPS (Real) : 73417.293683
MFLOPS : 50976.512081
MFLOPS (Real) : 50924.597321
A. V. Length : 233.506575
V. Op. Ratio (%) : 99.572922
L1 Cache Miss (sec) : 0.010847
CPU Port Conf. (sec) : 0.000000
V. Arith. Exec. (sec) : 8.406444
V. Load Exec. (sec) : 1.384491
VLD LLC Hit Element Ratio (%) : 100.000000
Power Throttling (sec) : 0.000000
Thermal Throttling (sec) : 0.000000
Max Active Threads : 1
Available CPU Cores : 8
Average CPU Cores Used : 0.999509
Memory Size Used (MB) : 204.000000

Time information

Number of instruction executions

Vectorization, memory and
parallelization information

Set the environment variable
“VE_PROGINF” to “YES” or “DETAIL”
and run the executable file.

“YES” … Basic information.
“DETAIL” … Basic and memory

information.

Performance information of the whole program

© NEC Corporation 201912

FTRACE

Performance information of each function

$ nfort -ftrace a.f90 b.f90 c.f90 (Compile and link a program with –ftrace)

$./a.out
$ ls ftrace.out
ftrace.out (At the end of execution, ftrace.out file is generated in a working directory)

$ ftrace (Type ftrace command and output analysis list to the standard output)

FTRACE ANALYSIS LIST

Execution Date : Thu Mar 22 17:32:54 2018 JST
Total CPU Time : 0:00'11"163 (11.163 sec.)

FREQUENCY EXCLUSIVE AVER.TIME MOPS MFLOPS V.OP AVER. VECTOR L1CACHE CPU PORT VLD LLC PROC.NAME
TIME[sec](%) [msec] RATIO V.LEN TIME MISS CONF HIT E.%

15000 4.762(42.7) 0.317 77117.2 62034.6 99.45 251.0 4.605 0.002 0.000 100.00 funcA
15000 3.541(31.7) 0.236 73510.3 56944.5 99.46 216.0 3.554 0.000 0.000 100.00 funcB
15000 2.726(24.4) 0.182 71930.2 27556.5 99.43 230.8 2.725 0.000 0.000 100.00 funcC

1 0.134(1.2) 133.700 60368.8 35641.2 98.53 214.9 0.118 0.000 0.000 0.00 main

45001 11.163(100.0) 0.248 74505.7 51683.9 99.44 233.5 11.002 0.002 0.000 100.00 total

$ ftrace -f ftrace.out.0.0 ftrace.out.0.1 ftrace.out.0.2 ftrace.out.0.3

$ ls ftrace.out.*
ftrace.out.0.0 ftrace.out.0.1 ftrace.out.0.2 ftrace.out.0.3

For an MPI program, multiple ftrace.out files are generated. Specify them by -f option.

© NEC Corporation 201913

▌In FTRACE, performance information is collected at the function
entry/exit. So if many functions are called, the execution time would
increase.

▌Performance information of functions in the files compiled without
–ftrace are contained in that of the caller function.

▌In FTRACE, performance information of the inlined functions are
contained in that of the caller function.

▌Performance information of system library functions

PROGINF result contains the performance information of system library
functions called from a program.

FTRACE result contains the performance information of system library
functions called from a program. They are included in the performance
information of the caller function.

Notes of Performance Analysis

$ nfort -ftrace -c a.f90
$ nfort -c main.cpp b.f90 c.f90
$ nfort -ftrace a.o main.o b.o c.o
$./a.out

• Compile with “–ftrace” only the file contains

the target function.

• Also specify “-ftrace” for linking.

Debugging

© NEC Corporation 201915

Traceback Information

Traceback information

Occur “divide-by-zero”

Use traceback information

Advance-mode is off

Catch exception of “divide-by-zero”

Compile and link with –traceback

Specify where the exception occurs

Notice that divide-by-zero is occurring in
the 5th line in the main.f90 file

Note: “VE_FPE_ENABLE” can be set to

any other value but traceback basically

uses “DIV” or “INV”.

PROGRAM MAIN
REAL :: A, B
A = 1.0
B = 0.0
PRINT *, A/B
END

$ nfort -traceback main.f90
$ export VE_TRACEBACK=FULL
$ export VE_ADVANCEOFF=YES
$ export VE_FPE_ENABLE=DIV
$./a.out
Runtime Error: Divide by zero at 0x6000000105d0
[1] Called from 0x600000010750
[2] Called from 0x7f8f41e307a8
[3] Called from 0x600000003700
Floating point exception
$ naddr2line –e a.out –a 0x6000000105d0
0x00006000000105d0
/.../main.f90:5

Compile and link with –traceback.

Set the environment variable “VE_TRACEBACK”
to “FULL” or “ALL” at execution.

Set the environment variable “VE_FPE_ENABLE”
to catch arithmetic exceptions.

“DIV” … Divide-by-zero exception
“INV” … Invalid operation exception
“DIV,INV” … Both exceptions

© NEC Corporation 201916

Using GDB

When debugging without -O0, compiler optimization may delete or move

code or variables, so the debugger may not be able to reference variables or

set breakpoints.

The exception occurrence point output by traceback information can be

incorrect by the advance control of HW. The advance control can be stopped

to set the environment variable VE_ADVANCEOFF=YES. But the execution time

may increase substantially to stop the advance control. Please take care it.

Only a.f90 is compiled with -O0 –g(avoid performance degradation)

The others are compiled without –g

Run GDB

$ nfort –O0 –g –c a.f90
$ nfort –O4 –c b.f90 c.f90
$ nfort a.o b.o c.o
$ gdb a.out
(gdb) break sub
Breakpoint 1 at sub
(gdb) run
Breakpoint 1 at sub
(gdb) continue
...

Specify –g to the files including the functions which you want to debug,

in order to minimize performance degradation

© NEC Corporation 201917

Strace: Trace of System Call

▌Arguments and return values of system calls are output

You can check if the system library has been called properly.

You should carefully select system calls to be traced by -e of
strace, because the output would be so many.

System call arguments System call return values

$ /opt/nec/ve/bin/strace ./a.out
...
write(2, "delt=0.0251953, TSTEP".., 27) = 27
open(“MULNET.DAT", O_WRONLY|O_CREAT|O_TRUNC, 0666)= 5
ioctl(5, TCGETA, 0x8000000CC0) Err#25 ENOTTY
fxstat(5, 0x8000000AB0) = 0
write(5, "1 2 66 65", 4095) = 4095
write(5, "343 342", 4096) = 4096
write(5, "603 602", 4096) = 4096
write(5, "863 862", 4094) = 4094
write(5, "1105 1104", 4095) = 4095
write(5, "1249 1313 1312", 4095) = 4095
write(5, "1456 1457 1521 1520", 4095) = 4095
write(5, "1727", 4095) = 4095
...

Automatic Vectorization

© NEC Corporation 201919

Vectorization Features

Execution image of scalar instructions

Execution image of scalar instructions

Execute one

calculation

100 times

Execute 100

calculation

at once

At most 256
calculation
at once

A(1) = B(1) + C(1)
A(2) = B(2) + C(2)
A(3) = B(3) + C(3)
…
A(100)=B(100) + C(100)

DO I = 1, 100
A(I) = B(I) + C(I)

END DO

A(100) = B(100) C(100)+

A(1) = B(1) C(1)+

A(2) = B(2) C(2)+

…

A(1)

A(2)

…

A(100)

B(1)

B(2)

…

B(100)

C(1)

C(2)

…

C(100)

＝ ＋

▌An orderly arranged scalar data sequence such as a line, column,
or diagonal of a matrix is called vector data. Vectorization is the
replacement of scalar instructions with vector instructions.

© NEC Corporation 201920

Comparison of HW Instruction

$vr1 $vr2

$vr3

+

① ②③④

① ②

③

④

Array ”B” Array “C”

Array “A”

In the case of a scalar machine, these four
instruction sequences must be repeated 100 times.

(memory) (memory)

(memory)

(vector register)(vector register)

(vector register)

A(1) = B(1) + C(1)
A(2) = B(2) + C(2)
…
A(100)= B(100) + C(100)

① VLoad $vr1, B(1:100)
② VLoad $vr2, C(1:100)
③ VAdd $vr3, $vr1, $vr2
④ VStore $vr3, A(1:100)

1,2 … 100 1,2 … 100

2,4 … 200

In Vector Engine, up to 256 array
elements can be collected into
vector register and calculation can
be executed at once.

© NEC Corporation 201921

Comparison of Instruction Execution Time

Note that the order of addition has changed.
(“B (2) + C (2)” is added faster than “E (1) + F (1)”)

Execution image of scalar addition instruction

(when two instructions are simultaneously executed)

Execution time

Scalar instruction

Vector instruction

Execution image of vector addition instruction

Reduced execution time

………………………………

When the number of loop iterations

is large enough, vector instructions

can achieve maximum performance.

Scalar addition instruction is faster
when the number of iterations of
the loop is very small

DO I = 1, 100
A(I) = B(I) + C(I)
D(I) = E(I) + F(I)

END DO
B(1)+C(1)
E(1)+F(1)

B(2)+C(2)
E(2)+F(2)

B(3)+C(3)
E(3)+F(3)

B(100)+C(100)
E(100)+F(100)

E(100)+F(100)

E(1)+F(1)

E(2)+F(2)

E(3)+F(3)

……

B(100)+C(100)

B(2)+C(2)

B(3)+C(3)

……

B(1)+C(1)

© NEC Corporation 201922

Vectorizable Loop

▌A loop which contains only vectorizable types and operations.

Not include 1-byte, 2-byte and 16-byte data types.

•These types are rarely used in numerical calculations.

•There are no corresponding type of vector operation instructions.

Not include function call.

•Except trigonometric functions, exponential functions and logarithmic functions.

These are vectorizable.

▌There are no unvectorizable dependencies in the definition and

reference of arrays and variables.

It is possible to change the calculation order.

▌Performance improvement can be expected by vectorization.

Loop length (number of loop iterations) is sufficiently large.

© NEC Corporation 201923

before update

Unvectorizable Dependencies (1)

The calculation order cannot be changed, when array
elements or variables which defined in the previous
iteration are referred in the later iteration.

Example 1

Unvectorizable, because the updated

“A” value cannot be referenced.

Vectorizable, because the order of

calculation does not change.

Example 2

Check that there is no lower right arrow between loop iterations.

Calculation order in scalar Calculation order in vector

A(1) = A(2) * B(2) + C(2); A(1) = A(2) * B(2) + C(2);

A(2) = A(3) * B(3) + C(3); A(2) = A(3) * B(3) + C(3);

A(3) = A(4) * B(4) + C(4); A(3) = A(4) * B(4) + C(4);

A(4) = A(5) * B(5) + C(5); A(4) = A(5) * B(5) + C(5);

: :

Calculation order in scalar Calculation order in vector

A(3) = A(2) * B(2) + C(2); A(3) = A(2) * B(2) + C(2);

A(4) = A(3) * B(3) + C(3); A(4) = A(3) * B(3) + C(3);

A(5) = A(4) * B(4) + C(4); A(5) = A(4) * B(4) + C(4);

A(6) = A(5) * B(5) + C(5); A(6) = A(5) * B(5) + C(5);

: :

A(n)：Updated “A” value

DO I = 2, N
A(I+1) = A(I) * B(I) + C(I)

END DO

DO I = 2, N
A(I-1) = A(I) * B(I) + C(I)

END DO

© NEC Corporation 201924

Unvectorizable Dependencies (2)

Example 3

Unvectorizable, because the

reference of “S” appears before

its definition in a loop.

It can be vectorized by

transforming the program.

DO I = 1, N
A(I) = S
S = B(I) + C(I)

END DO

A(1) = S
DO I = 2, N

S = B(I-1) + C(I-1)
A(I) = S

END DO
S = B(N) + C(N)

Calculation order in scalar Calculation order in vector

A(1) = S A(1) = S

S = B(1) + C(1) A(2) = S

A(1) = S :

S = B(1) + C(1) A(N) = S

: S = B(1) + C(1)

S = B(2) + C(2)

:

Calculation order in scalar Calculation order in vector

A(1) = S A(1) = S
S = B(1) + C(1) S = B(1) + C(1)
A(2) = S S = B(2) + C(2)
S = B(2) + C(2) :

: A(2) = S
A(3) = S

:

© NEC Corporation 201925

Unvectorizable Dependencies (3)

Example 4

Cannot be vectorized when a variable

definition may not be executed, even if its

definition precedes its reference.

Can be vectorized, because there is always a

definition of “S” before its reference.

Example 5

Example 6 Cannot be vectorized. It is not possible to

determine whether there is a dependency or

not, because the value of “K” is unknown at

compilation.

Unknown pattern in Example 1 or 2

S = 1.0
DO I = 1, N

IF (A(I) .LT. 0.0) THEN
S = A(I)

END IF
B(I) = S + C(I)

END DO

DO I = 1, N
IF (A(I) .LT. 0.0) THEN

S = A(I)
ELSE

S = D(I)
END IF
B(I) = S + C(I)

END DO

DO I = 1, N
A(I) = A(I+K) + B(I)

END DO

© NEC Corporation 201926

Program

A(1:M,1:N) = B(1:M,1:N) + C(1:M,1:N)
B(1:M,1:N) = SIN(D(1:M,1:N))

DO J = 1, N
DO I =1, M
A(I,J) = B(I,J) + C(I,J)

END DO
END DO
DO J = 1, N
DO I =1, M
B(I,J) = SIN(D(I,J))

END DO
END DO

DO J = 1, N
DO I =1, M
A(I,J) = B(I,J) + C(I,J)
B(I,J) = SIN(D(I,J))

END DO
END DO

Image of transformation by compiler 1

Image of transformation by compiler 2

An array expression is vectorized on optimal dimension after the
compiler internally transforms it to DO loop format and performs

optimizations such like loop fusion, loop collapse and so on.

Vectorization of Array Expression

© NEC Corporation 201927

Vectorization of IF Statement

Conditional branches (IF statements) are also vectorized.

Execute with vector operations

DO I = 1, 100
IF (A(I) .LT. B(I)) THEN
A(I) = B(I) + C(I)

END IF
END DO

mask(1) = A(1) .LT. B(1)
mask(2) = A(2) .LT. B(2)
: : :

mask(100) = A(100) .LT. B(100)

if (mask(1) == .TRUE.) A(1) = B(1) + C(1)
if (mask(2) == .TRUE.) A(2) = B(2) + C(2)
: : :
if (mask(100) == .TRUE.) A(100) = B(100) + C(100)

© NEC Corporation 201928

Diagnostic Message

▌You can check the vectorization status from output messages
and lists of the compiler.

Standard error … -fdiag-vector=2 (detail)

Outputs diagnostic list … -report-diagnostics

$ nfort –fdiag-vector=2 abc.f
…
nfort: vec(103): abc.f, line 23: Unvectorized loop.
nfort: vec(122): abc.f, line 24: Dependency unknown. Unvectorizable dependency is assumed.: RHO
nfort: vec(122): abc.f, line 25: Dependency unknown. Unvectorizable dependency is assumed.: RHO
nfort: vec(101): abc.f, line 50: Vectorized loop.
…
$ nfort –report-diagnostics abc.f
…
$ less abc.L
FILE NAME: abc.f
…
PROCEDURE NAME: SUB
DIAGNOSTIC LIST

LINE DIAGNOSTIC MESSAGE

23: vec(103): Unvectorized loop.
24: vec(122): Dependency unknown. Unvectorizable dependency is assumed.: RHO
25: vec(122): Dependency unknown. Unvectorizable dependency is assumed.: RHO
50: vec(101): Vectorized loop.

…

List file name is "source file name. L"

A message indicating that pointer RHO
is considered to have a dependency that
cannot be vectorized and has not been
vectorized

© NEC Corporation 201929

Format List

▌Loop structure and vectorization, parallelization and inlining
statuses are output with the source lines
A format list is output when -report-format is specified.

The whole loop is vectorized.

The loop is not vectorized.

$ nfort –report-format a.f90 –c
...
$ less a.L

:
PROCEDURE NAME: SUB
FORMAT LIST

LINE LOOP STATEMENT

1: SUBROUTINE SUB(A, B, C, X, Y, Z, N)
2: INTEGER :: N
3: REAL(KIND=4) :: A(N), B(N), C(N)
4: REAL(KIND=16) :: X(N), Y(N), Z(N)
5: INTEGER :: I
6:
7: V------> DO I = 1, N
8: | A(I) = B(I) * C(I)
9: V------ END DO
10:
11: +------> DO I = 1, N
12: | X(I) = Y(I) * Z(I)
13: +------ END DO
14:
15: END SUBROUTINE SUB

List file name is ”source file name.L”

Extended Vectorization Features

© NEC Corporation 201931

Extended Vectorization Features

▌Statement Replacement

▌Loop Collapse

▌Loop Interchange

▌Partial Vectorization

▌Conditional Vectorization

▌Macro Operations

▌Outer Loop Vectorization

▌Loop Fusion

▌Inlining

When the basic conditions for vectorization are not satisfied,

the compiler performs as much vectorization as possible by

transforming the program and using the special vector

operations.

© NEC Corporation 201932

Statement Replacement

When this loop is vectorized, all

the value from B[1] to B[99] will

be 2.0. This loop do not satisfy

the vectorization conditions.

DO I = 1, 99
A(I) = 2.0
B(I) = A(I+1)

END DO

Source Program Transformation Image

The compiler replaces the

statements in the loop to satisfy

the vectorization conditions.

DO I = 1, 99
B(I) = A(I+1)
A(I) = 2.0

END DO

© NEC Corporation 201933

Loop Collapse

A loop collapse is effective in

increasing the loop iteration

count and improving the

efficiency of vector instructions.

REAL A(M,N), B(M,N), C(M,N)
DO J = 1, N
DO I = 1, M
A(I,J) = B(I,J) + C(I,J)

END DO
END DO

Source Program

Transformation Image

REAL A(M,N), B(M,N), C(M,N)
DO IJ = 1, M*N
A(IJ,1) = B(IJ,1) + C(IJ,1)

END DO

© NEC Corporation 201934

Loop Interchange

The loop “DO I=1,N” has

unvectorizable dependency about
the array A.

DO J = 1, M
DO I = 1, N
A(I+1,J) = A(I,J) + B(I,J)

END DO
END DO

A(2,1) = A(1,1) + B(1,1)
A(3,1) = A(2,1) + B(2,1)
A(4,1) = A(3,1) + B(3,1)
A(5,1) = A(4,1) + B(4,1)

A(2,1) = A(1,1) + B(1,1)
A(2,2) = A(1,2) + B(1,2)
A(2,3) = A(1,3) + B(1,3)
A(2,4) = A(1,4) + B(1,4)

Interchanging loops removes
unvectorizable dependency, and
enable the loop “DO J=1,M” to be

vectorized.

DO I = 1, N
DO J = 1, M
A(I+1,J) = A(I,J) + B(I,J)

END DO
END DO

Source Program Transformation Image

© NEC Corporation 201935

Partial Vectorization

DO I = 1, N
X = A(I) + B(I)
Y = C(I) + D(I)
WRITE(6,*) X, Y

END DO

If a vectorizable part and an unvectorizable part exist together in

a loop, the compiler divides the loop into vectorizable and

unvectorizable parts and vectorizes just the vectorizable part.

To do this, work vectors (the array WX and WY in above example)

are generated if necessary.

Vectorizable

Unvectorizable

DO I = 1, N
WX(I) = A(I) + B(I)
WY(I) = C(I) + D(I)

END DO
DO I = 1, N
WRITE(6,*) WX(I), WY(I)

END DO

Source Program Transformation Image

© NEC Corporation 201936

Conditional Vectorization

DO I = N, N+99
A(I) = A(I+K) + B(I)

END DO

IF((K.GE.0) .OR. (K.LT.-99)) THEN
! Vectorized Code

ELSE
! Unvectorized Code

END IF

The compiler generates a variety of codes for a loop, including

vectorized codes and scalar codes, as well as special codes

and normal codes. The type of code is selected by run-time

testing at execution when conditional vectorization is

performed.

(When k=-1)
A(I) = A(I-1) + B(I)

(When k=-100)
A(I) = A(I-100) + B(I)

N N+99…

A(I-100) A(I)

Source Program Transformation Image

© NEC Corporation 201937

Macro Operations

Although patterns like these do not

satisfy the vectorization conditions for

definitions and references, the

compiler recognizes them to be

special patterns and performs

vectorization by using proprietary

vector instructions.

Sum

Iteration

DO I = 1, N
S = S + A(I)

END DO

DO I = 1, N
A(I) = A(I-1) * B(I) + C(I)

END DO

DO I = 1, N
IF (XMAX .LT. X(I)) THEN
XMAX = X(I)

END IF
END DO

Maximum or minimum values

© NEC Corporation 201938

Outer Loop Vectorization

The compiler basically vectorizes the innermost loop.

If a statement which is contained only in the outer loop

exists, the compiler divides the loop and vectorizes the

divided outer loop.

In this case,
these loops are
collapsed.

DO I = 1, N
DO J = 1, N
A(I,J) = 0.0

END DO
B(I) = 1.0

END DO

DO I = 1,N
DO J = 1,N
A(I,J) = 0.0

END DO
END DO
DO I = 1, N
B(I) = 1.0

END DO

Source Program Transformation Image

© NEC Corporation 201939

Loop Fusion

The compiler fuses consecutive loops which have the same

iteration count and vectorizes the fused loop.

If the same shape array and loop structure are continuous, they

can be fused. But if there are the different shape arrays, loop

structures, and other sentences, they cannot be fused.

In order to increase speed, it is better to make same shape arrays

and loop structures continuous as much as possible.

DO I = 1, N
A(I) = B(I) + C(I)

END DO
DO I = 1, N
D(I) = SIN(E(I))

END DO

DO I = 1, N
A(I) = B(I) + C(I)
D(I) = SIN(E(I))

END DO

Source Program Transformation Image

A(1:M) = B(1:M) + C(1:M)
D(1:M) = E(1:M) * F(1:M) + S

DO I = 1, M
A(I,J) = B(I,J) + C(I,J)
D(I,J) = E(I,J) * F(I,J) + S

END DO

© NEC Corporation 201940

Vectorization with Inlining

When the -finline-functions option is specified, the compiler

expands the function directory at the point of calling it if possible.

If the function is called in a loop, the compiler tries to vectorize

the loop after inlining the function.

DO I = 1, N
CALL SUB(B(I),C(I))
A(I) = B(I)

END DO
：

SUBROUTINE SUB(X,Y)
X = SIN(Y)

END

DO I=1,N
B(I) = SIN(C(I))
A(I) = B(I)

END DO
：

SUBROUTINE SUB(X,Y)
X = SIN(Y)

END

Source Program Transformation Image

Program Tuning

“Tuning” is to increase executing speed of a program (reduce the

execution time) by specifying compiler options and #pragma directives.

The performance of Vector Engine system can be derived at the

maximum by tuning.

© NEC Corporation 201942

Point of View in Tuning

▌Raising the Vectorization Ratio

The vectorization ratio is the ratio of the part processed by vector

instructions in the whole program.

The vectorization ratio can be improved by removing the cause of

unvectorization.

• Increase the part processed by vector instructions.

▌Improving Vector Instruction Efficiency

Increase the amount of data processed by one vector instruction.

•Make the iteration count of a loop (loop length) as long as possible.

Stop vectorization when the loop is so short.

•See p.21 “Comparison of instruction execution time”.

▌Improving Memory Access Efficiency

Avoid using a list vector.

© NEC Corporation 201943

Vectorization Ratio

▌The ratio of the part processed by vector instructions in whole
program

▌The vector operation ratio is used instead of the vectorization
ratio

Scalar execution

Vector execution

Execution time
of scalar part

Execution time of vectorizable part
executed by scalar instructions

Execution time
of scalar part

Execution time
of vector part

Ts

Ts×α

Tv

α: Vectorization ratio
Ts: Scalar execution time
Tv: Vector execution time

Vector
operation
ratio

Number of vector instruction
execution elements

Execution count of
all instructions

Number of vector instruction
execution elements

＋

= 100 ×
Execution count of
vector instructions

-

© NEC Corporation 201944

Loop Iteration Count and Execution Time

▌To maximize the effect of vectorization, the loop iteration
count should be made as long as possible

Increase the amount of data processed by one vector instruction.

Execution
Time

Loop

Iteration Count

When the loop is
not vectorized

When the loop is
vectorized

Reduced time

Crossover length
(= about 3)

The average number of
date processed by one
vector instruction.
The maximum number
is 256.

Analyze
average vector length.

It is difficult to analyze
iteration count for each
loops.

Improving vector
instruction efficiency

© NEC Corporation 201945

Process of Tuning

▌Finding the function whose execution time is long, vector

operation ratio is law and average vector length is short

from the performance analysis information

PROGINF

•Execution time, vector operation ratio and average vector length of

the whole program.

FTRACE

•Execution time, execution count, vector operation ratio and average

vector length of each function.

▌Finding unvectorized loops in the function from diagnostics

for vectorization

▌Improving vectorization by specifying compiler options

and directives

© NEC Corporation 201946

PROGINF

▌A.V.Length (Average vector length)

 Indicator of vector instruction
efficiency.

The longer, the better (Maximum
length: 256).

 If this value is short, the iteration
count of the vectorized loops is
insufficient.

▌V.Op.Ratio (Vector operation ratio)

Ratio of data processed by vector
instructions.

The larger, the better (Maximum rate:
100).

 If this value is small, the number of
vectorized loops is small or there are
few loops in the program.

Output example

******** Program Information ********
Real Time (sec) : 11.336602
User Time (sec) : 11.330778
Vector Time (sec) : 11.018179
Inst. Count : 6206113403
V. Inst. Count : 2653887022
V. Element Count : 619700067996
V. Load Element Count : 53789940198
FLOP count : 576929115066
MOPS : 73455.206067
MOPS (Real) : 73370.001718
MFLOPS : 50950.894570
MFLOPS (Real) : 50891.794092
A. V. Length : 233.506575
V. Op. Ratio (%) : 99.572922
L1 Cache Miss (sec) : 0.010855
CPU Port Conf. (sec) : 0.000000
V. Arith. Exec. (sec) : 8.410951
V. Load Exec. (sec) : 1.386046
VLD LLC Hit Element Ratio (%) : 100.000000
Power Throttling (sec) : 0.000000
Thermal Throttling (sec) : 0.000000
Max Active Threads : 1
Available CPU Cores : 8
Average CPU Cores Used : 0.999486
Memory Size Used (MB) : 204.000000

© NEC Corporation 201947

FTRACE

▌A feature used to obtain performance information of each
function

Focus on V.OP.RATIO (Vector operation ratio) and AVER.V.LEN
(Average vector length) as well as PROGINF, and analyze the
performance of each function.

FTRACE ANALYSIS LIST

Execution Date : Thu Mar 22 15:47:42 2018 JST
Total CPU Time : 0:00'11"168 (11.168 sec.)

FREQUENCY EXCLUSIVE AVER.TIME MOPS MFLOPS V.OP AVER. VECTOR L1CACHE CPU PORT VLD LLC PROC.NAME
TIME[sec](%) [msec] RATIO V.LEN TIME MISS CONF HIT E.%

15000 4.767(42.7) 0.318 77030.2 61964.6 99.45 251.0 4.610 0.002 0.000 100.00 FUNC_A
15000 3.541(31.7) 0.236 73505.6 56940.8 99.46 216.0 3.555 0.000 0.000 100.00 FUNC_B
15000 2.726(24.4) 0.182 71930.1 27556.5 99.43 230.8 2.725 0.000 0.000 100.00 FUNC_C

1 0.134(1.2) 133.700 60368.9 35641.3 98.53 214.9 0.118 0.000 0.000 0.00 MAIN

45001 11.168(100.0) 0.248 74468.3 51657.9 99.44 233.5 11.008 0.002 0.000 100.00 total

Tuning Techniques

© NEC Corporation 201949

Compiler Directives

▌The compiler directive is to give the compiler the information

that it cannot obtain from source code analysis alone to further

the effects of the vectorization and parallelization, writing !NEC$.

The compiler directive format is as follows.

!NEC$ directive-name [clause] (free format / fixed format)

*NEC$ directive-name [clause] (fixed format)

cNEC$ directive-name [clause] (fixed format)

Major vectorized compiler directives.

• VECTOR/NOVECTOR : Allows [Disallows] automatic vectorization of the following loop

• IVDEP : Regards the unknown dependency as vectorizable dependency

during the automatic vectorization.

!NEC$ IVDEP
DO I = 1, N

A(IX(I)) = A(IX(I)) + B(I)
END DO

• Specify the vectorization directive option just before
the loop by delimiting with the specified space.

• It works only for the loop immediately after the
directive.

© NEC Corporation 201950

Dealing with Unvectorizable Dependencies (1)

DO I = 1, N

IF (X(I).LT.S) THEN
T = X(I)

ELSE IF (X(I).GE.S) THEN

T = -X(I)
END IF

Y(I) = T
END DO

nfort: vec(103): a.f, line 16: Unvectorized loop.
nfort: vec(113): a.f, line 16: Overhead of loop division is too large.
nfort: vec(121): a.f, line 18: Unvectorizable dependency.

Such messages
may be displayed
to attempt partial
vectorization.

Unvectorized Loop Vectorized Loop

It cannot be
vectorized.
Because compiler
cannot
recognizes the
variable “T” is
defined or not.

Modified so that
variable “T” is
always defined.

DO I = 1, N
IF (A(I).GT.0.0) THEN

S = S + B(I)
ELSE

S = S + C(I)
END IF

END DO

Unvectorized Loop Vectorized Loop

Compiler cannot
recognizes sum
type macro
operation.

Vectorization as
a sum type
macro operation.

Sum type macro operation is
vectorized using special HW
instruction

nfort: vec(101): a.f, line 16: Vectorized loop.
nfort: vec(126): a.f, line 22: Idiom detected.: Sum.

<Diagnostic message after vectorization>

DO I = 1, N
IF (X(I).LT.S) THEN

T = X(I)
ELSE

T = -X(I)
END IF

Y(I) = T

Raising
Vectorization
Ratio

DO I = 1, N
IF (A(I).GT.0.0) THEN

T = B(I)
ELSE

T = C(I)
END IF
S = S + T

END DO

© NEC Corporation 201951

Dealing with Unvectorizable Dependencies (2)

▌Specify “IVDEP” if you know that there are no unvectorizable data

dependencies in the loops, even when the compiler assumed that some
unvectorizable dependencies exist.

nfort: vec(103): dep.f90, line 5: Unvectorized loop.
nfort: vec(122): dep.f90, line 6: Dependency unknown. Unvectorizable dependency is
assumed.: A

SUBROUTINE SUB(A, B, C, N, K)
INTEGER I, N, K
REAL A(N), B(N), C(N)

DO I = 1, N
A(I+K) = A(I) + B(I)

END DO
END SUBROUTINE SUB

nfort: vec(101): dep.f90, line 5: Vectorized loop.

Unvectorized Loop Vectorized Loop

It is not vectorized because it is unknown
whether the pattern of A(I-1) = A(I) or
the pattern of A(I+1) = A(I)

When it is clear that the pattern is A(I-1)
= A(I), specify “IVDEP” to vectorize

<Diagnostic message after vectorization>

SUBROUTINE SUB(A, B, C, N, K)
INTEGER I, N, K
REAL A(N), B(N), C(N)

!NEC$ IVDEP
DO I = 1, N

A(I+K) = A(I) + B(I)
END DO

END SUBROUTINE SUB

Raising
Vectorization
Ratio

© NEC Corporation 201952

Inlining: Improving of Vectorization

▌When a function call prevents vectorization, above messages
are output

▌Try to inlining with specifying “-finline-functions” option

SUBROUTINE SUB(A, B, C, D, N)
INTEGER I, N
REAL A(N), B(N), C(N), D(N)
DO I=1, N ! Unvectorized

A(I) = FUN(B(I), C(I)) / D(I)
END DO

END

FUNCTION FUN(X, Y)
REAL X, Y
FUN = SQRT(X) * Y

END FUNCTION FUN

<Specifying compiler option >

SQRT is a vectorizable function, so it does not prevent vectorization.

nfort: vec(110): a.f90, line 4: Vectorization obstructive procedure reference.: FUN
nfort: vec(103): a.f90, line 4: Unvectorized loop.
nfort: opt(1025): a.f90, line 5: Reference to this procedure inhibits optimization.: FUN

Raising
Vectorization
Ratio

$ nfort –finline-functions a.f90

DO I=1, N ! Vectorized
A(I)= SQRT(B(I))*C(I) / D(I)

END DO

nfort: vec(101): func.f90, line 4: Vectorized loop.
nfort: inl(1222): func.f90, line 5: Inlined: FUN

<Transformation Image>

© NEC Corporation 201953

A Loop Contains an Array with a Vector Subscript Expression

ソースプログラム
nfort: vec(101): a.f90, line 5: Vectorized loop.
nfort: vec(126): a.f90, line 6: Idiom detected.: LIST VECTOR

▌Specifying IVDEP for the list vector further improve performance

List vector is an array with a vector subscript expression.

When the same list vector appears on both the left and right sides of an
assignment operator, it cannot be vectorized because its dependency is
unknown.

nfort: vec(101): a.f90, line 5: Vectorized loop.

<Message after vectorization by IVDEP>

Vectorized Loop (“LIST_VECTOR” Directives) Vectorized Loop (“IVDEV” Directives)

!NEC$ IVDEP
DO I = 1, N

A(IX(I)) = A(IX(I)) + B(I)
END DO

!NEC$ LIST_VECTOR
DO I = 1, N

A(IX(I)) = A(IX(I)) + B(I)
END DO

Raising
Vectorization
Ratio

If LIST_VECTOR is specified, the loop can be vectorized.

If the same element of array “A” is not defined twice or more in the loop, in
other words, if there are no duplicate values in “IX(I)”, more efficient vector
instructions can be generated by specifying IVDEP instead of LIST_VECTOR.

© NEC Corporation 201954

▌Outer loop unrolling will reduce the number of load and store
operations in the inner loops.

 Unrolling the outer loop when there are multiple loop nests reduces the number of loads
and stores that use only the inner loop's induction variable.

Outer Loop Unrolling

nfort: opt(1592): a.f90, line 5: Outer loop unrolled inside inner loop.: J
nfort: vec(101): a.f90, line 6: Vectorized loop.

<Message after outer loop unroll by OUTERLOOP_UNROLL directive>

Specifying OUTERLOOP_UNROLL directive or -fouterloop-unroll option shortens the loop length of the outer

loop (induction variable “I”) and reduces the number of vector loads of the array “C”.

!NEC$ OUTERLOOP_UNROLL(4)
DO J = 1, N

DO I = 1, M
A(I,J) = B(I,J) + C(I)

END DO
END DO

DO J = 1, N
DO I = 1, M

A(I,J) = B(I,J) + C(I)
END DO

END DO

Program after unrolling the outer loop 4 times.

Insert OUTERLOOP_UNROLL(4) directive

DO J = 1, N%3
DO I = 1, M
A(I,J) = B(I,J) + C(I)

END DO
END DO

DO J = N%3+1, N, 4
DO I = 1, M
A(I,J) = B(I,J) + C(I)
A(I,J+1) = B(I,J+1) + C(I)
A(I,J+2) = B(I,J+2) + C(I)
A(I,J+3) = B(I,J+3) + C(I)

END DO
END DO

specify 2x times
unrolling in
parentheses.

4 times vector operations can
be performed per one vector
load in array “C”

Raising
Vectorization
Ratio

© NEC Corporation 201955

Small Iteration Loop

▌When the iteration count is small, loop controlling expressions can
be eliminated

 The iteration count <= 256 : A short-loop which does not have “terminate loop?” is
generated.

 The iteration count << 256 : The loop is expanded and loop controlling expressions
are eliminated.

Initialization of each
iteration

Terminate loop?

Loop body
(Calculation)

Normal Loop

(Iteration count > 256)

Initialization of each
iteration

Loop body
(Calculation)

Loop body
(Calculation)

Short-Loop

(Iteration count <= 256)

Loop Expansion

(Iteration count << 256)

DO I = 1, N
...
END DO

(Using vector instruction) (Using scalar instruction)

!NEC$ SHORTLOOP
DO I = 1, N
...
END DO

!NEC$ UNROLL(7)
DO I = 1, 7
...
END DO

Raising
Vectorization
Ratio

Notes on Using Vectorization

© NEC Corporation 201957

Level of Automatic Vectorization and Optimization Applied

▌The following vectorization and optimization are applied
automatically when changing the level of automatic
vectorization at “-O4”, “-O3” and “-O2”

Applied vectorization and optimization -O4 -O3 -O2

Vectorization by condition vectorization

(-m[no-]vector-dependency-test) ○ ○ ○

Vectorization by loop collapse, loop interchange and
transform matrix multiply loops into a vector matrix library
function call.

(-f[no-]loop-collapse,

-f[no-]loop-interchange,

-f[no-]matrix-multiply)

○ ○ －

Disallows the compiler to assume that the object pointed-to-
by a named pointer are aliasing in vectorization.

(-fnamed-[no]alias)
○ ○ －

Allows outer-loop unrolling

(-f[no-]outerloop-unroll) ○ ○ －

lowhigh

Remark: Only the major options are listed, () is the compiler option when specifying separately.

© NEC Corporation 201958

Influence on Result by Vectorization

▌Results may differ within an error range with and without vectorization

 “Conversion of division to multiplication” or “reordering of operations” may

cause “loss of trailing digits”, ”cancellation” and “rounding error”.

The vector versions of mathematical functions do not always use the same

algorithms as the scalar versions.

An integer iteration macro operation is vectorized by using a floating point

instruction. So when the result exceeds 52 bits or when a floating overflow

occurs, the result differs from that of scalar execution.

When vector fusion product-sum operation (FMA) is used, since addition is

performed without rounding up the integration result in the middle, the

operation result may be different from when it is not used.

▌If you care about the error range

Specify the “NOVECTOR” directive. The loop is not vectorized.

Specify the "NOFMA" directive. Vector fused-multiply-add instruction does not

generated.

!NEC$ NOVECTOR
DO I = 1, N

SUM = SUM + A(I)
END DO

© NEC Corporation 201959

The Bus Error Caused by Vectorization

▌It may occur because vector load/store for 8 bytes elements is executed
for the array aligned in 4 bytes

 In the following example, sub.f90 is compiled with –fdefault-real=8. Therefore, the arrays

“A” and “B” of type REAL are vector loaded/stored for 8 bytes elements.

 Vector load/store for 8 bytes elements requires an array aligned in 8 bytes. If the array is

aligned in 4 bytes, the execution failed by the bus error for an invalid memory access.

▌Declare an array as 4 bytes data type explicitly or specify the NOVECTOR
directive to the loop to stop vectorization

PROGRAM MAIN
REAL :: A(512), B(512)
...
CALL SUB(A,B,512)

END

SUBROUTINE SUB(A, B, N)
INTEGER :: N
REAL :: A(N), B(N)
B = A !!!<---vectorized

END SUBROUTINE SUB

main.f90 sub.f90

$ nfort –c main.f90
$ nfort –c -fdefault-real=8 sub.f90
$ nfort main.o sub.o
$./a.out
Bus error

SUBROUTINE SUB(A, B, N)
INTEGER :: N
REAL(KIND=4) :: A(N), B(N)
B = A

END SUBROUTINE SUB

SUBROUTINE SUB(A, B, N)
INTEGER :: N
REAL :: A(N), B(N)

!NEC$ NOVECTOR
B = A

END SUBROUTINE SUB

Explicitly specify 4
bytes data type.

Specify NOVECTOR
directive.

Automatic Parallelization
and OpenMP Fortran

© NEC Corporation 201961

DO I = 1, 100
A(I,J) = B(I,J)

Automatic Parallelization Features

▌Split one job and execute it simultaneously in multiple threads

Split loop iteration.

Split a series of processing (a collection of sentences) in a program.

Example when loop iteration is split into four

DO I = 1, 100

A(I,J) = B(I,J)

DO J = 1, 25

DO I = 1, 100

A(I,J) = B(I,J)

DO J = 26, 50

DO I = 1, 100

A(I,J) = B(I,J)

DO J = 51, 75

for (i=0; i<n; i++)

a[j][i] += b[j][i];

DO J = 76, 100

Serial execution

DO J = 1, 100

Thread 0 Thread 1 Thread 2 Thread 3

Parallel execution

© NEC Corporation 201962

Reduce the Elapsed Time by Parallelization

▌Reduce the elapsed time by parallelization
Increase total CPU time due to overhead for parallel

processing.

CPU Time

Thread 0 Elapsed time when executed by 1 CPU

Overhead
（Processing to execute work in parallel in each thread）

Elapsed time when executed with 4 threads

Elapsed time

CPU time when executed with 4 threads

Serial CPU Time CPU Time CPU Time

CPU Time

CPU Time

CPU Time

CPU Time

CPU Time CPU Time CPU Time CPU Time

Reduce

Total CPU time

Thread 1

Thread 2

Thread 3

© NEC Corporation 201963

Program Parallelization

▌Program to execute in parallel in multiple threads
Select loops and statements and extract code that can be

execute in parallel.

Generate executable code to execute in parallel with automatic
parallelization or OpenMP.

SUBROUTINE SUB(A, N)
INTEGER :: N, I, J
REAL(KIND=8) :: A(N), B(N)
REAL(KIND=8) :: SUM = 1.0

DO J = 1, N
for (i=0; i<n; i++)

sum += a[j] + b[i];
}

RETURN
END SUBROUTINE SUB

DO J = 1, N
DO I = 1, N

SUM = SUM + A[j] + B[I]
ENDDO

ENDDO

$ nfort –mparallel a.f90
nfort: par(1801): a.f90, line 6: Parallel routine generated.: SUB$1
nfort: par(1803): a.f90, line 6: Parallelized by "do".
nfort: vec(101): a.f90, line 7: Vectorized loop.

Example 1: Parallelization by automatic parallelization

Remark: Other part of loop is regarded as impossible to execute in parallel.

Search loops that can be execute in parallel.

Specify “-mparallel” to enable automatic parallelization.

Extract as another function to
execute the loop in parallel.Vectorize the inner loop.

© NEC Corporation 201964

Parallelization Programming Available on Vector Engine

▌OpenMP Fortran

 The programmer selects a set of loops and statement blocks that can be executed in

parallel, and specifies OpenMP directives indicating how to parallelize them.

 The compiler transforms the program based on the instruction and inserts a directives for

parallel processing control.

▌Automatic parallelization

 The compiler selects loops and statement blocks that can be executed in parallel and

transforms the program into parallel processing control.

 The compiler automatically performs all the work of loop detection and program

modification and directives insertion of "Example 1" on the previous page.

Programming method
Select loops /
blocks

Insert directives
Program
modification

Difficulty

OpenMP Fortran
(-fopenmp)

○ ○ － High

Automatic parallelization
(-mparallel)

－ － － Low

Remark: At the time of tuning, even if it is a section of "-", Handwork may be needed.

○ : Handwork is needed.
－ : Handwork is not needed because the compiler automatically executes it.

OpenMP Parallelization

© NEC Corporation 201966

OpenMP Fortran

▌International standards of directives and libraries for shared memory
parallel processing

 “NEC Fortran Compiler for Vector Engine” supports some features up to
“OpenMP Version 4.5”.

▌Programming method

The programmer extracts a set of loops and statements that can be executed
in parallel, and specifies OpenMP directives indicating how to parallelize them.

The compiler modifies the program based on the instruction and inserts
processing for parallel processing control.

Compile and link with “-fopenmp”.

▌Feature

Higher performance improvement than automatic parallelization is expected
because the programmer can select and specify the parallelization part.

Easy to program because the compiler performs program transformation
involving extraction of parallelized part, barrier synchronization and shared
attribute of variables.

$ nfort –fopenmp a.f90 b.f90 Specify “-fopenmp” also when linking

© NEC Corporation 201967

$ nfort –fopenmp a.f90
nfort: par(1801): a.f90, line 5: Parallel routine generated.: SUB$1
nfort: par(1803): a.f90, line 6: Parallelized by "do".
nfort: vec(101): a.f90, line 7: Vectorized loop.

Example: Writing in OpenMP Fortran

!$OMP PARALLEL DO

▌The OpenMP directives follows “!$OMP” to specify the

parallelization method.

PARALLEL

Specify start of parallelization region

DO

Specify parallelization of for loop

SUBROUTINE SUB(A, N)
INTEGER :: N, I, J
REAL(KIND=8) :: A(N), B(N)
REAL(KIND=8) :: SUM = 1.0

!$OMP PARALLEL DO
DO J = 1, N

for (i=0; i<n; i++)
sum += a[j] + b[i];

}

RETURN
END SUBROUTINE SUB

DO J = 1, N
DO I = 1, N
SUM = SUM + A(J) + B(I)

ENDDO
ENDDO

Parallelize subroutine “SUB” of Example 1 with OpenMP Fortran

Search loops that can be execute in parallel.

Insert OpenMP
directives. Specifying with“-fopenmp”. And OpenMP directives is enable.

The Compiler modifies the program so that
the compiler can execute in parallel.

© NEC Corporation 201968

Terms 6

8

▌OpenMP thread

A unit of logical parallelism. Sometimes abbreviated as thread.

▌Parallel region

A collection of statements executed in parallel by multiple OpenMP
threads.

▌Serial region

A collection of statements executed only by the master thread
outside of a parallel region.

▌Private

Accessible from only one of the OpenMP threads that execute
parallel regions.

▌Shared

Accessible by all OpenMP threads executing parallel regions.

© NEC Corporation 201969

OpenMP Directives

Explain only frequently used items

!$OMP PARALLEL DO [schedule-clause] [NOWAIT]
SCHEDULE(STATIC[,size]) … SCHEDULE(STATIC) is default value

•Perform round-robin allocation and execution on OpenMP threads with size iterations
grouped together.

•When the specification of size is omitted, the value obtained by dividing size by the
number of threads is regarded as specified.

SCHEDULE(DYNAMIC[,size])

•Dynamically allocate and execute on OpenMP thread by grouping size iterations together.

•When the specification of size is omitted, it is assumed that 1 is specified.

SCHEDULE(RUNTIME)

•Execute according to the schedule method set in the environment variable
“OMP_SCHEDULE”.

NOWAIT

•Do not perform implicit barrier synchronization at the end of parallel loop.

!$OMP SINGLE
Execute only on one OpenMP thread. Execute with the task, not necessarily the
master thread that reached the directive finally.

!$OMP CRITICAL
Do not execute in multiple OpenMP threads at the same time (exclusive control).

Automatic Parallelization

© NEC Corporation 201971

Automatic Parallelization

Also specify -mparallel for linking.

In automatic parallelization, compiler does everything
suggested in "Example: Writing in OpenMP Fortran".

$ nfort –mparallel a.f90 b.f90

▌Compile and link with –mparallel.

Compiler finds and parallelizes parallelizable loops and statements.

•Automatically select loops without factors inhibiting parallelization.

•Automatically select outermost loops in multiple loops.

–Innermost loops should be increased speed with vectorization.

▌Compiler directives to control automatic parallelization.

Compiler directive format

!NEC$ directive-option

Major directive options

• CONCURRENT/NOCONCURRENT … parallelize/not-parallelize a loop right after this.

• CNCALL … parallelize a loop including procedure calls.

© NEC Corporation 201972

Control Automatic Parallelization with Directives

▌NOCONCURRENT ... Do not parallelize a loop right after this directive.

▌CNCALL ... Parallelize a loop including function call.

CALL SUB(4) ! function call
...
SUBROUTINE SUB(M)

INTEGER :: M
...

DO J = 1, M ! M is small actually
DO I = 1, N

A(I) = B(J) / C(J)
ENDDO

ENDDO

#pragma _NEC cncall

DO I = 1, M
A(I) = FUNC(B(I), C(I))

ENDDO

!NEC$ NOCONCURRENT

!NEC$ CNCALL

Stop parallelization by NOCONCURRENT

Performance sometimes degrades when small loop is
parallelized because overhead of parallelization
accounts for much ratio of execution.

Loops including a procedure call is not parallelized
automatically because it is unknown if the procedure
can be executed in parallel.

Parallelize by CNCALL when procedures can be

parallelized.

(Programmer must ensure that procedures can be
executed in parallel.)

© NEC Corporation 201973

Apply Both OpenMP and Automatic Parallelization

▌Compile and link with both –fopenmp and -mparallel.

Automatic parallelization is applied to the loops outside of OpenMP parallel
regions.

 If you don’t want to apply automatic parallelization to a routine containing
OpenMP directives, specify -mno-parallel-omp-routine.

$ nfort –fopenmp –mparallel a.f90 b.f90

SUBROUTINE SUB(A, N)
INTEGER :: I, J, N
REAL(KIND=8) :: A(N), B(N,N)
REAL(KIND=8) :: S = 1.0

DO I = 1, N
DO J = 1, N
B(J,I) = I * J

END DO
END DO

!$OMP PARALLEL DO
DO J = 1, N
DO I = 1, N
S = S + A(J) + B(J,I)

END DO
END DO

...
END SUBROUTINE SUB

$ nfort -fopenmp -mparallel t.f90
nfort: par(1801): t.f90, line 6: Parallel routine generated.: SUB$1
nfort: par(1803): t.f90, line 6: Parallelized by "do".
nfort: vec(101): t.f90, line 7: Vectorized loop.
nfort: par(1801): t.f90, line 12: Parallel routine generated.: SUB$2
nfort: par(1803): t.f90, line 13: Parallelized by "do".
nfort: vec(101): t.f90, line 14: Vectorized loop.

Automatic parallelized

OpenMP parallelized

Behavior of Parallelized Program

© NEC Corporation 201975

Master thread

Thread 1

Serial region

SUBROUTINE SUB (A, N)

INTEGER :: N, I, J

REAL(KIND=8) :: A(N), B(N)

REAL(KIND=8) :: SUM = 1.0

REAL(KIND=8) :: DERIVE

DERIVE = 12.3

DO I = 1, N

B(I) = DERIVE

ENDDO

...

DO J = 1, N

DO I = 1, N

SUM = SUM + A(J) + B(I)

ENDDO

END DO

RETURN

END SUBROUTINE SUB

Parallel region

!$OMP PARALLEL PRIVATE(DERIVE)

!$OMP DO

!$OMP PARALLEL DO REDUCTION(+:SUM)

Execution Image of Program Parallelized with OpenMP

When parallelized with OpenMP

!$OMP END PARALLEL

All variables

except loop

control variables

are shared when

there are no

specifications.

Thread 2 Thread 3

Parallel region

Serial region

Serial region

Execute the same code

Execute parallelized loop

Execute parallelized loop

Parallel region is taken

out as another function

by compiler. The

function name is

SUB$1.

The function name is

SUB$2

Barrier sync is done

Threads are generated before
main function

Note: VE does not support nested parallelism.

© NEC Corporation 201976

Execution Image of Automatically Parallelized Program

Master thread

SUBROUTINE SUB (A, B, N)
INTEGER :: N, I, J
REAL(KIND=8) :: A(N), B(N)
REAL(KIND=8) :: SUM = 0.0
...

RETURN

END SUBROUTINE SUB

DO J = 1, N
DO I = 1, N

SUM = SUM + A(J) + B(I)
ENDDO

ENDDO

(Solid line: Program execution, Dashed line: Waiting process)

Thread 1 Thread 2 Thread 3

Execute in serial

Execute in serial

Execute split loops in parallel

(Execute time is decreased

in this part.)

Exclusion control

(SUM is calculated from results

calculated by each thread.)

Threads are generated
before main function

© NEC Corporation 201977

Decide Number of Threads in OpenMP

▌Number of threads used in parallel process is decided by rules
as follows.

NUM_THREADS(requested) is specified

in parallel directive

No

No

Yes

OMP_SET_NUM_THREADS(requested) is

specified in a function.

Number of threads is less than one of the followings.

• Number of VE cores

• Number specified by requested

Yes

No

Yes

Note: Even if you requested over 8 threads, the maximum number of
threads is 8, because the number of VE cores is 8.

requested is set in OMP_NUM_THREADS

Number of threads is number of

available VE cores

Tuning Parallelized Program

© NEC Corporation 201979

Point of View in Tuning

▌Are there many parts executed in parallel?

 Is the ratio of execution time of parallelizable part to elapse time of whole part
executed in single small?

(Increase parallelized execution part/parallelized loop.)

▌Is parallelized effectively?

 Is execution time of parallelized loop long enough? (Parallelize suitable loops.)

 Is parallelization overhead large? (Reduce overhead.)

Are workloads of each thread uniform? (Consider process in loops.)

Not parallelized Parallelized

Not parallelized Parallelized

Serial process

Parallel process

Execution time(elapse time)

Reduce amount of

not parallelized part

Reduce execution time

of parallelized part

© NEC Corporation 201980

Tuning Flow

1. Select loop/procedure targets of parallelization.

Find procedures whose execution time is long according to

information of PROGINF and FTRACE.

2. Increase parallelized part.

Check if loops in procedures found in 1. is parallelizable, and

add the directives and transform program to parallelize them.

3. Improve load balance.

Adjust load balance to make workloads of each thread uniform

according to PROGINF and FTRACE information.

Used performance analysis

• FTRACE

Note: Vectorization should be done enough before parallelization.

© NEC Corporation 201981

Select Loops for Parallelization

DO J = 1, N
DO I = 1, M

A(I,J) = B(I,J) + C(I,J)
ENDDO

ENDDO

I=1,2…M ….

J=1

...

I=1,2…M

J=2

I=1,2…M

J=N

...

▌Loops without factors inhibiting parallelization

Not parallelizable dependencies.

Not parallelizable control flow.

Procedure call like I/O procedures whose execution order must be
ensured.

▌Outermost loop in multiple loops

Loops whose execution time is long.

Consider to increase speed of innermost loops with vectorization.

In automatic parallelization,
correspond loops are selected and
parallelized automatically.

Increase speed with vectorization

Increase speed with parallelization

Overhead of parallelization

© NEC Corporation 201982

Not Parallelizable Dependencies

▌Loops where the same array element is defined and referred in
different iterations.

▌Loops where the same scalar variable is defined and referred in
different iterations.

Define and refer the same array element
Iteration Reference Definition

B(2)
B(3)
B(4)
B(5)
:

B(1)
B(2)
B(3)
B(4)
:

I=1
I=2
I=3
I=4
:

DO I = 1, N

A(I) =

b[i] = C(I)

ENDDO

B(I+1)

B(I)

DO J = 1, N
DO I = 1, M

if (a[j][i] >= d) {
T= a[j][i] – d;

}

C(I,J) =
ENDDO

ENDDO

IF (A(I,J) .GE. D) THEN
T = A(I,J) – D

ENDIF

T

DO I = 1, N

C(I) =

t = B(I)

}

T

T

Executed in thread 1

Executed in thread 2

The order of definition and reference of B(3) is undefined.

Same scalar variable Variable defined under a condition is referred out of it.

• Parallelizable if the variable is

referred after definition.

• Sum/Product patterns are parallelizable

by transforming program, directives and so on.

(Compiler recognizes the patterns and parallelizes

automatically in automatic parallelization.)

• Variable T is defined

in IF branch. Defined

value is referred in

iterations.

• This case is not

parallelizable even if

the variable is referred

after definition.

© NEC Corporation 201983

Not Parallelizable Control Flow

DO J = 1, N
DO I = 1, N

IF (A(I,J) < 0.0)
B(I,J) = SQRT(A(I,J))

ENDDO
ENDDO

GOTO 100

100 CONTINUE

▌Jump from loops

Not parallelizable because iterations must not be executed after that
when condition for jumping is true.

© NEC Corporation 201984

Add Directives to Promote Parallelization

SUBROUTINE SUB(A, B, N)
INTEGER :: N, I
REAL :: A(N), B(N), C(N)

DO I = 1, N
C(I) = FUNC(A(I), B(I))

ENDDO
END

SUBROUTINE SUB(A, B, N)
INTEGER :: N, I
REAL :: A(N), B(N), C(N)

DO I = 1, N
C(I) = FUNC(A(I), B(I))

ENDDO
END

$ nfort –mparallel –fdiag-parallel=2 a.f90 –c
nfort: par(1801): a.f90, line 5: Parallel routine generated.: SUB$1
nfort: par(1803): a.f90, line 5: Parallelized by "do".
nfort: vec(103): a.f90, line 5: Unvectorized loop.

!NEC$ CNCALL

$ nfort –mparallel –fdiag-parallel=2 a.f90 –c
nfort: vec(103): a.f90, line 5: Unvectorized loop.

▌Loops including a procedure call is not parallelized automatically
because it is unknown if the procedure can be executed in
parallel.

▌If the procedure can be executed in parallel, specify the directive
CNCALL to parallelize automatically the loop.

© NEC Corporation 201985

SUBROUTINE SUB(A, B, N)
INTEGER :: N, I, J
REAL :: A(N), B(N), X(N), WK(256)
REAL :: SUM = 0.0

!NEC$ PARALLEL DO PRIVATE(WK)
DO I = 1, N

DO J = 1, N
WK(I) = A(I) + B(J)

ENDDO
CALL SUB1(X(J), WK)

!NEC$ ATOMIC
SUM = SUM + X(J)

ENDDO
END SUBROUTINE SUB

Forced Parallelization Directive

▌Specify forced parallelization directive PARALLEL DO to parallelize.

Enable to specify parallelization for loops and statement list.

Compiler ignore data dependencies and parallelize them.

Programmer must ensure that the correct result can be obtained in parallel
execution.

!NEC$ ATOMIC

!NEC$ PARALLEL DO PRIVATE(WK)

▌Not parallelized in automatic parallelization.

▌It is ensured that a correct result can be obtained even in parallel

execution.

Specify forced parallelization on a loop
Specify variables and arrays used for
work in PRIVATE clause.

Specify ATOMIC right before

statements which need to be
processed exclusively like
sum and accumulation in
forced parallelized loops.

© NEC Corporation 201986

Overhead of Parallelization

▌Overhead: Increased execution time by parallelizing a program.

Execution time of the process added by a programmer to parallelize

a program.

• Increased time by transforming a program.

• Processing time of runtime libraries to control parallelization.

Waiting time of exclusive control in system libraries.

•Waiting time for exclusive control in system library functions to update and

refer system data.

–File I/O functions, MALLOC() and so on.

Waiting time for barrier sync with other threads.

© NEC Corporation 201987

Exclusive Control in System Libraries

▌Exclusive control is executed to inhibit the other OpenMP
threads from updating data used in whole program at the
same time when they are referred or updated.

File descriptor, management data of area allocated with MALLOC()
and so on.

▌Reduce procedure calls in system libraries.

Put together MALLOC() as much as possible.

Declare the data used in a procedure as local data to allocate
them in stack.

Read file contents, map them on memory and read required data
from memory when there are enough available area in memory.

© NEC Corporation 201988

Reduce Waiting Time for Barrier Sync (1)

▌In OpenMP, barrier sync is executed automatically at places as follows.

End of parallel loop without NOWAIT clause.

End of parallel loop with REDUCTION clause.(*)

Beginning of parallel region with COPYIN clause.(*)

End of parallel region.(*)

▌Make workloads of each thread uniform. (Reduce waiting time)

SCHEDULE(DYNAMIC) clause is effective to make workloads of parallel loop

uniform which changes in each iteration.

!$OMP DO SCHEDULE()
DO J = 1, M

DO I = 1, N
...

ENDDO
ENDDO

!$OMP DO SCHEDULE()
DO J = 1, M

DO I = 1, N
...

ENDDO
ENDDO

STATIC DYNAMIC

In automatic parallelization,

compiler makes implicit barrier

sync properly.

In the cases (*), barrier sync

cannot be omitted because of the

mechanism of parallel process.

© NEC Corporation 201989

Reduce Waiting Time for Barrier Sync (2)

▌Remove implicit barrier sync by combining parallel regions.

▌Remove unnecessary barrier sync by specifying NOWAIT clause.

Compiler ignores NOWAIT clause if it is specified on barrier sync

unable to be removed.

SUBROTINE SUB()
...
X = 0.0;

!$OMP PARALLEL
!$OMP DO
DO I = 1, N
A(I) = ...

ENDDO
!$OMP DO
DO I = 1, N*2
B(I) = ...

ENDDO
!$OMP END PARALLEL

...
END SUBROTINE SUB

NOWAIT

NOWAIT

SUBROTINE SUB()
...

DO I = 1, N
A(I) = ...

ENDDO
X = 0.0

DO I = 1, N*2
B(I) = ...

ENDDO
...

END SUBROTINE SUB

!OMP$ PARALLEL DO

!OMP$ PARALLEL DO

SUBROTINE SUB()
...
X = 0.0;

DO I = 1, N
A(I) = ...

ENDDO

DO I = 1, N*2
B(I) = ...

ENDDO

...
END SUBROTINE SUB

!OMP$ PARALLEL

!OMP$ DO

!OMP$ DO

!OMP$ END PARALLEL

Combine parallel regions Specify NOWAIT clause

© NEC Corporation 201990

Improve Load Balance (1)

▌There is much waiting time at the end of a loop as follows
because the workloads of each thread are not uniform.

!$OMP DO
DO J = 1024, 1, -1
DO I = 1, J

…
ENDDO

ENDDO

J

J

When parallel loop is split to 4 and
they are executed by 4 threads

Thread0 Thread1 Thread2 Thread3

Waiting time

Beginning of parallel loop

End of parallel loop
Barrier sync executedTime

Beginning of parallel loop

End of parallel loop
Barrier sync executedTime

Improve load balance

Thread0 Thread1 Thread2 Thread3

Iteration of inner loop or calculation
amount decreased as the iteration of
parallelized loop goes forward.

All calculation can be done in
shorter time by making workloads
of each thread uniform and
reducing waiting time.

© NEC Corporation 201991

Improve Load Balance (2)

▌OpenMP parallelization

Adjust parameter of SCHEDULE clause.

▌Automatic parallelization

Adjust parameter of SCHEDULE clause in
CONCURRENT directive as well as OpenMP.

!$OMP DO SCHEDULE(DYNAMIC,4)
DO J = 1024, 1, -1

DO I = 1, J
...

ENDDO
ENDDO

!NEC$ CONCURRENT SCHEDULE(DYNAMIC,4)
DO J = 1024, 1, -1

DO I = 1, J
...

ENDDO
ENDDO

Split parallel region into smaller parts and assign them to
each thread to make their workloads uniform.

When SCHEDULE(DYNAMIC,4)
is specified

Parallel region is split to number
of threads when parameter is
not specified.(Split to four)

Enable to reduce gap by
splitting the region smaller.

Make the number of regions as
less as possible because the more
it increases, the more time it
takes to control threads.

© NEC Corporation 201992

FTRACE

▌Load balance in procedures are shown in information for each thread.

Specify !NEC$ CONCURRENT SCHEDULE(DYNAMIC, 4) right before the outermost loop

REQUENCY EXCLUSIVE AVER.TIME MOPS MFLOPS V.OP AVER. VECTOR L1CACHE CPU PORT VLD LLC PROC.NAME
TIME[sec](%) [msec] RATIO V.LEN TIME MISS CONF HIT E.%

60000 66.872(99.6) 1.115 93599.2 74318.7 99.52 248.5 64.077 1.418 0.000 100.00 SUBX$1
15000 16.766(25.0) 1.118 92992.0 73842.7 99.52 248.5 16.022 0.409 0.000 100.00 -thread0
15000 16.697(24.9) 1.113 91671.0 72790.7 99.52 248.5 16.000 0.397 0.000 100.00 -thread1
15000 16.714(24.9) 1.114 94854.7 75312.8 99.52 248.5 16.040 0.305 0.000 100.00 -thread2
15000 16.695(24.9) 1.113 94880.7 75329.6 99.51 248.5 16.014 0.307 0.000 100.00 -thread3
15000 0.129(0.2) 0.009 1284.5 0.1 0.00 0.0 0.000 0.010 0.000 0.00 SUBX

...
--

79001 67.148(100.0) 0.850 93334.5 74082.8 99.51 248.5 64.192 1.430 0.000 100.00 total

REQUENCY EXCLUSIVE AVER.TIME MOPS MFLOPS V.OP AVER. VECTOR L1CACHE CPU PORT VLD LLC PROC.NAME
TIME[sec](%) [msec] RATIO V.LEN TIME MISS CONF HIT E.%

60000 62.177(73.1) 1.036 100641.4 79931.0 99.55 248.5 62.134 0.023 0.000 100.00 SUBX$1
15000 4.467(5.3) 0.298 107076.2 83033.3 99.47 248.4 4.455 0.005 0.000 100.00 -thread0
15000 11.552(13.6) 0.770 104082.7 82404.6 99.54 248.5 11.542 0.006 0.000 100.00 -thread1
15000 19.000(22.3) 1.267 101390.4 80683.3 99.55 248.6 18.990 0.006 0.000 100.00 -thread2
15000 27.157(31.9) 1.810 97595.1 77842.2 99.56 248.6 27.147 0.006 0.000 100.00 -thread3
15000 22.711(26.7) 1.514 1426.9 0.0 0.00 0.0 0.000 0.015 0.000 0.00 SUBX

...
--

79001 85.034(100.0) 1.076 74062.7 58500.4 98.89 248.5 62.249 0.043 0.000 100.00 total

Before :EXCLUSIVE TIME are ununiform for -thread0 to -thread3 of SUBX$1.(Load imbalance)
After :EXCLUSIVE TIME are uniform for each thread and that of SUBX is shorter (time for barrier
sync and so on are reduced) although that of SUBX$1 increases because of time to control threads.

Notes on Using Parallelization

© NEC Corporation 201994

Allocated Area by ALLOCATE Statement

▌Whether the areas allocated by ALLOCATE statement are shared

or private is decided as follows.

Are allocated arrays or pointers shared or private?

Is process executed in parallel when the area is allocated?

SUBROUTINE SUB()

REAL,ALLOCATABLE :: P(:), Q(:)

REAL,ALLOCATABLE :: R(:), S(:)

ALLOCATE(P(16))

!$OMP PARALLEL PRIVATE(R,S)

!$OMP SINGLE

ALLOCATE(Q(16))

!$OMP END SINGLE

!$OMP MASTER

ALLOCATE(R(16))

!$OMP END MASTER

ALLOCATE(S(16))

!$OMP END PARALLEL

END SUBROUTINE SUB

Parallel process

section

P,Q : shared

R,S : private

ALLOCATE(P(16)) is executed once. P is shared,

so all threads refer the same area.

ALLOCATE(Q(16)) is executed by one thread and

only one area is allocated. Q is shared, so all

threads refer the same area.

ALLOCATE(R(16)) is executed by only master

thread and only one area is allocated. R is private,

so R is still unallocated in threads other than

master thread.

ALLOCATE(S(16)) is executed by all threads and

four areas are allocated. S is private, so each

thread uses separate areas.

© NEC Corporation 201995

Huge Local Array

▌When huge local array is used in a parallel region, set the
environment variable OMP_STACKSIZE to a value which is larger than
the size of the array.

OMP_STACKSIZE is an environment variable which sets the maximum stack

size of threads other than master thread. If this is not set, the maximum
stack size is 4MByte.

 If the size of array is exceeded the size of unused area on stack, the
program is terminated abnormally.

$ cat a.f90
PROGRAM MAIN
...
!$OMP PARALLEL
CALL SUB()

!$OMP END PARALLEL
...
END PROGRAM

SUBROTINE SUB()
REAL(KIND=8) :: X(16*1024*1024)
REAL(KIND=8) :: Y(16*1024*1024)

...
END SUBROUTINE SUB
...
$ nfort –fopenmp a.f90
$ export OMP_STACKSIZE=384M
$./a.out

Stack area of
thread #3

Stack area of
thread #2

Stack area of
thread #1

Stack area of
master thread

....

Virtual Memory Area

Size set by OMP_STACKSIZE

The maximum stack size is rounded to the
page size which is a multiple of 64MB. So it
can be used over the size specified by
OMP_STACKSIZE. But when the used size is over

the rounded size, it causes abnormal
termination.
If the maximum size is set too large, the other
area (heap and so on) becomes smaller. So it
is better not to specify the larger size than
you need.

© NEC Corporation 201996

Sum Operation

DO I = 1, 100
SUM = SUM + X(I)

ENDDO

X(76)+...+X(100)

SUM

X(51)+...+X(75)X(26)+...+X(50)X(1)+...+X(25)

+ + + +

▌Sum operation can be parallelized but the order of additions can
be changed every time because the order of execution of each
threads is not constant.(Execution order is not ensured.)

Calculation result may differ in operation error range from it in serial
execution, or may vary at every execution in parallel.

Thread 0 Thread 1 Thread 2 Thread 3

The calculation results may vary at
every execution because the order of
these additions is not necessarily same
every time.

