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Preface 

This document explains how to use the NEC HPF compiler for the Vector Engine. 

The latest version of this document is available at the NEC Aurora Web Forums: 

 https://www.hpc.nec/forums/ 

 

Currently, parallelization of large scale scientific programs that require super-

computers is inevitable to obtain execution performance or use large amount of 

memory. However, development of distributed-memory parallel programs is very 

time-consuming because programmers have to explicitly assign data and 

computation to computation nodes and describe data transfer among them. 

High Performance Fortran (HPF) is a set of extensions to Fortran 95 published by 

HPF Forum (HPFF), which was led by Ken Kennedy of Rice University. A goal of HPF 

is to enable programmers to parallelize programs for distributed-memory parallel 

computers easily. 

The effort to standardize HPF began in 1991, and HPF 1.0 was published as early 

as in May 1993, which was revised to HPF 1.1 with minor improvements in 

November 1993. As a result of further discussions in HPFF2, HPF 2.0 was published 

in January 1997, in which features are reduced from HPF 1.0 to facilitate early 

development of HPF compilers. HPF 2.0 also defines HPF Approved Extensions to 

make up for functional insufficiency of the language. 

In Japan, Japan Association for HPF (JAHPF), which consisted of domestic compiler 

manufacturers and supercomputer users, started in 1997 and published HPF/JA 1.0 

specification, which defines features that enable more detail control of 

parallelization and data transfer in addition to main features of HPF 2.0 and HPF 

Approved Extensions, in January 1999. 

 

Description of High Performance Fortran (HPF) Language in this document is based on 

the following documents published by HPF Forum.  

 High Performance Fortran Language Specification, High Performance Fortran 

Forum, November 10, 1994 Version 1.1 

 High Performance Fortran Language Specification, High Performance Fortran 

Forum, January 31, 1997 Version 2.0  
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Description of HPF/JA, which is an extension of HPF, in this document is based on the 

following document.  

 HPF/JA Language Specification, JAHPF (Japan Association for High 

Performance Fortran), January 31, 1999 Version 1.0 

English Version 1.0 November 11,1999  

 

Please refer to the documents at the following sites to learn the specifications of HPF 

and HPF/JA in more detail.  

 http://hpff.rice.edu/versions/ 

 http://site.hpfpc.org/home/former_hpfpc/gengo-shiyou 

 

(Note) The information above is as of September, 2020.  

 

 

The following is related documents for using NEC HPF. 

 

 How to use the NEC Fortran compiler 

Fortran Compiler User’s Guide (G2AF02E) 

 How to use NEC MPI 

NEC MPI User’s Guide (G2AM01E) 

 How to use PROGINF and FTRACE 

PROGINF/FTRACE User’s Guide (G2AT03E) 

 How to use NQSV 

NEC Network Queuing System V (NQSV) User's Guide (G2AD03E) 

 

http://hpff.rice.edu/versions/
http://site.hpfpc.org/home/former_hpfpc/gengo-shiyou
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Definitions and Abbreviations 

Term Description 

Vector Engine (VE) The core part of the SX-Aurora TSUBASA system, on which 

applications are executed. A VE is implemented as a PCI 

Express card and attached to a server called a vector host. 

Vector Host (VH) A Linux (x86) server to which VEs are attached, in other 

words, a host computer equipped with VEs. 

Host A VH or VE 

NQSV A job scheduler for the SX-Aurora TSUBASA. 

NQSV request 

execution 

Program execution using NQSV. 

VE number An identification number of a VE. VE numbers of VEs 

attached to a VH are consecutive integer values starting at 

0. 

VH name The hostname of a VH, which is a host computer. 

MPI Abbreviation of Message Passing Interface. MPI is a 

standard specification for a communication library. It can be 

used together with OpenMP or automatic parallelization. 
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Chapter1 Getting Started 

1.1 Introduction to HPF 

1.1.1 Distributed-Memory Parallel Programming with HPF 

Program development for distributed-memory parallel computers requires consideration of 

the following three points:  

 

 Data Mapping 

It is necessary to decide which part of data should be allocated on which process, which 

is called data mapping. 

Access to data allocated on remote processes involves much higher overhead compared 

with that allocated on the local process. Therefore, data used in a series of processing 

should be allocated on the same process.  

 

 Processing Assignment (Computation Mapping)  

It is necessary to decide which processing such as computations, assignments, and 

branches should be executed on which process. This is called computation mapping. 

Generally, to achieve N-times speed-up using N processes, it is necessary for processes 

to share the processing equally and processing on each process must be able to be 

executed simultaneously. 

 

 Data Transfer 

When a process that performs some processing differs from a process on which data 

needed for the processing is allocated, the data has to be transferred from the latter 

process to the former process as shown in Figure 1 since the former process cannot 

directly access the data on the latter. 
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Figure 1  Data Transfer 

 

Moreover, synchronization between the processes is also necessary before and after 

the data transfer. 

 

It is really time-consuming and error-prone to develop high-performance parallel programs 

considering all these points as in parallel programming with MPI. The basic concept of HPF is 

that programmers only decide data mapping, and HPF compilers decide computation 

mapping and generate necessary data transfer and synchronization among processes 

automatically according to the data mapping. Therefore, programmers can develop parallel 

programs as if all processes could access all data on all processes without considering whether 

data is allocated on the local process or remote processes. This programming model is called 

global model in HPF.   

 

HPF compilers parallelize programs by mainly assigning iterations of parallelizable loops to 

processes. HPF compilers decide computation mapping so that data can be accessed locally 

as much as possible. Therefore, the main task of programmers in HPF is to map arrays along 

the axis accessed by parallelizable loops as shown in Figure 2.  

 

 

Figure 2  HPF Programming 
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1.1.2 HPF Program Examples 

The following program assigns sum of two arrays a and b to the array c.  

Figure 3  Fortran Program Example 

  

It is possible to compile and execute this program with HPF compilers as it is. However, HPF 

compilers do not parallelize this program at all for the following reason. HPF compilers allocate 

whole arrays for which HPF directives are not specified on every process and assign 

processing on the arrays so that each process accesses only data on itself as much as possible. 

As a result, all processes execute all processing, and no speed-up is obtained no matter how 

many processes execute.  

  

It is necessary to specify data mapping of the arrays to parallelize this program with HPF. The 

second line of Figure 4 is a DISTRIBUTE directive, the most basic HPF directive for data 

mapping. This directive specifies that the arrays a, b, and c should be distributed onto 

processes evenly. 

Figure 4  HPF Program Example 

 

When this program is compiled and linked with HPF compilers and executed on two processes, 

real a(10), b(10), c(10) 

          : 

       do i=1, 10 

         c(i) = a(i) + b(i) 

       enddo 

real a(10), b(10), c(10) 

!HPF$ DISTRIBUTE (BLOCK) :: a, b, c 

          : 

       do i=1, 10 

         c(i) = a(i) + b(i) 

       enddo 
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process 0 and process 1, arrays are split evenly and the first half is allocated on process 0, 

and the second half on process 1. As for the processing, the first half of the loop is executed 

by process 0, and the second half by process 1 so that each process accesses only data on 

itself as much as possible. As a result, this program is parallelized well.  

 

In this way, what programmers mainly have to do in HPF programming is to specify data 

mapping of arrays by inserting HPF directives into serial Fortran programs, which are treated 

as comment lines by Fortran compilers.  

 

1.1.3 Overview of the HPF Specification 

The HPF specification consists of the HPF 2.0 specification, HPF Approved Extensions, and 

HPF/JA Extensions. NEC HPF’s extensions are also available. These are categorized in the 

following three features.  

 

 Data Mapping Related Directives  

Directives to specify how to map arrays onto processes, which are the main feature of 

HPF. 

 

 Computation Mapping and Data Transfer Related Directives  

HPF compilers sometimes fail to judge parallelizable loops as parallelizable or select 

optimal assignment of processing to processes, or generate unnecessary data transfer. 

In such cases, programmers can specify parallelizable loops (INDEPENDENT directive) 

or optimal assignment of processing to processes (ON-HOME directive), or that data 

transfer is not needed. 

 

 Other Features  

HPF defines various other features including intrinsic procedures such as 

NUMBER_OF_PROCESSORS(), library procedures such as mapping inquiry procedures 

and array computation procedures,  the EXTRINSIC procedure feature, which enables 

HPF procedures to call non-HPF procedures. 
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Usage of HPF directives is explained in Chapter4. Please refer to High Performance Fortran 

Language Specification and HPF/JA Language Specification for the accurate specifications of 

HPF directives.  

 

1.2 Introduction to the NEC HPF compiler 

1.2.1 Compilation and Link of HPF Programs 

It is possible to compile and link HPF programs with the HPF compilation command ve-hpf. 

Execution of the command ve-hpf generates executable HPF programs parallelized from HPF 

source programs as shown in Figure 5. NEC Fortran compiler (version 3.0.7 or after) in NEC 

SDK and NEC MPI are required to use NEC HPF. Please refer to Chapter2 for details of 

compilation and link of HPF programs.  

 

 

Figure 5  HPF compiler 

 

1.2.2 Execution of HPF Programs 

HPF executable programs are actually MPI executable programs with references to the MPI 

library. Therefore, it is possible to execute HPF executable programs with the command 

mpirun or mpiexec just like MPI executable programs. Refer to Chapter3 for details of 
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execution of HPF programs. 

 

1.2.3 Notes and Restrictions 

 The execution performance of formatted I/O is not fully tuned. Therefore, use 

unformatted I/O for reading or writing large size data if possible. 

 Derived types can be used only for declaring shadow areas. Therefore, only derived 

types whose only component is a one-dimensional array of type integer can be used. 

Also, derived types cannot be mapped. 

 Derived type arrays cannot appear in DATA statements. 

 Derived type constructors whose components include array constructors cannot appear 

in DATA statements. 

 Characteristics of pointer dummy arrays cannot be used for declaring other variables. 

For example, pointer dummy arrays cannot be referenced as the argument of the 

intrinsic functions LBOUND, UBOUND, or SIZE as follows: 

 

 Named multi-dimensional array constants cannot appear in initialization expressions. 

Especially, they cannot appear in the following contexts: 

 Case expressions in CASE statements 

 Kind parameters in declaration statements 

 KIND arguments of intrinsic procedures 

 Initialization expressions in PARAMETER statements or declarations statements. 

For example, the following description is not allowed. 

 

subroutine sub(p) 

integer, pointer :: p(:,:) 

integer, dimension(lbound(p,1):ubound(p,1), size(p,2)) :: a  ! Reference of p 
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 Named array constants declared in modules cannot be referenced in initialization 

expressions using the use association. Especially, named arrays and derived types 

declared in modules cannot appear in the following context. 

 Case expressions in CASE statements 

 Kind parameters in declaration statements 

 KIND arguments of intrinsic procedures 

 Initialization expressions in PARAMETER statements or declarations statements.  

 

 

 

 

integer, parameter, dimension(2,2) :: x = reshape((/1,2,3,4/), (/2,2/)) 

integer, parameter :: y = x(1,2)   ! Named multi-dimensional array constant x 
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Chapter2 Compilation and Link of HPF Programs 

This chapter describes how to compile and link HPF programs. 

2.1 Compilation and Link of HPF Programs 

Firstly, execute the following command to read the MPI setup script each time you log in to 

a VH, in order to set up the MPI and Fortran compilation environment. The setting is available 

until you log out.  

 

(In the case of bash) 

%> source /opt/nec/ve/mpi/{version}/bin/necmpivars.sh 

(In the case of csh) 

%> source /opt/nec/ve/mpi/{version}/bin/necmpivars.csh 

 

Here, {version} above is the directory name corresponding to the version of NEC MPI you 

use. For example, execute the following command to use NEC MPI version 2.5.0. 

 

(In the case of NEC MPI version 2.5.0 and bash) 

%> source /opt/nec/ve/mpi/2.5.0/bin/necmpivars.sh 

 

Please refer to NEC MPI User’s Guide for details. 

 

After that, execute the HPF compilation command ve-hpf to compile and link HPF programs 

as follows 

 

Here, 

 {options} indicates compiler options. The compiler options are HPF compiler options, 

major NEC Fortran compiler options, and NEC MPI compiler options. 

 {sourcefiles} indicates HPF source programs.  

%> ve-hpf  [{options}]  {sourcefiles}  [{options}] 
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 Descriptions in [] are optional. 

 

2.2 File Name Conventions 

2.2.1 Input Files 

The HPF compiler processes input files according to their suffixes as shown in Table 1. 

 

Table 1  Suffixes of Input Files 

Suffix Process 

.hpf Compiles as a fixed form HPF source program. 

.f Compiles as a fixed form HPF source program. 

.F Preprocesses and compiles as a fixed form HPF source program. 

.for Compiles as a fixed form HPF source program. 

.f90 Compiles as a free form HPF source program. 

.F90 Preprocesses and compiles as a free form HPF source program. 

.f95 Compiles as a free form HPF source program. 

.F95 Preprocesses and compiles as a free form HPF source program. 

.o Links as an object file 

.a Links as a library of object files 

 

2.2.2 Output Files 

The HPF compiler outputs files with suffixes shown in Table 2 according to input files and HPF 

compiler options specified. It is possible to specify the name of the executable file the HPF 

compiler generates with the HPF compiler option –o, which defaults to a.out.   

 

Table 2  Suffixes of Output Files 

Suffix Description 

.d Static data initialization file generated during compilation, which 
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is saved with the HPF compiler option –Mkeepstatic. 

.f Fortran intermediate file with reference to HPF runtime library, 

which is saved with the HPF compiler option -Mftn or –Mkeepftn.  

.mod Module file generated for HPF source files with modules 

.o Object file 

 

 

2.3 Compiler Options 

This section describes compiler options available in the HPF compilation command ve-hpf.  

Table 3 shows common compiler options. The common compiler options control behaviors of 

the HPF compiler and Fortran compiler. Optional specifications in suboptions are enclosed in 

[] in the table. 

 

Table 3  Common Compiler Options 

Option Suboption Description 

-c  Stops after compiling (The object file name is 

filename.o). 

-D name[=value] Defines a preprocessor macro name, with value 

val if specified.  

-E  Displays a pre-processed HPF source file to the 

standard output without compilation and link.  

-F  Saves a pre-processed HPF source file in 

filename.f.  

-I directory Adds a directory directory to the search path for 

include files. 

-L directory Adds a directory directory to the search path for 

library files. To use multiple directories for 

retrieval, this option can be specified multiple 
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Table 4 shows the HPF compiler options, which must be specified following –M and the 

times in the order in which retrieval is to be 

performed. 

-l library Loads the library library, in addition to the 

standard libraries. To retrieve multiple libraries, 

this option can be specified twice or more in the 

order in which retrieval is to be performed. 

-O Specifies the code optimization level (0 - 4). The default is 2.  

0 The HPF compiler does not perform 

optimizations and passes the -O0 option to the 

back-end Fortran compiler.  

1 The HPF compiler does not perform 

optimizations and passes the –O1 option to the 

back-end Fortran compiler. 

2 The HPF compiler performs optimizations and 

passes the –O2 option to the back-end Fortran 

compiler. 

3 The HPF compiler performs optimizations and 

passes the –O3 option to the back-end Fortran 

compiler. 

4 The HPF compiler performs optimizations and 

passes the –O4 option to the back-end Fortran 

compiler. 

-o filename Names the object file filename. 

-U name Undefines a preprocessor macro name. 

-V  Displays the HPF compiler version. 

-v  Displays the HPF compiler, backend Fortran 

compiler and linker phase invocations. 
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suboptions -Must be specified following the corresponding options without spaces.  

 

Table 4  HPF Compiler Options 

Option Suboption Description 

allow_nfort_cncall  Allows the Fortran compiler directive cncall. 

Note that if data transfer occurs in procedures 

invoked in parallelized loops, the behavior of 

the program is not guaranteed. 

allow_nfort_paralleldo  Allows the Fortran compiler directive parallel 

do. Note that if data transfer occurs in loops 

parallelized by the Fortran compiler, the 

behavior of the program is not guaranteed. 

autodist Specifies distribution of arrays.  

When the suboptions below are omitted, all arrays are 

distributed along the last axis with BLOCK distribution.  

 Arrays that appear in both COMMON statements and 

NAMELIST statements must not be distributed. If 

distributed, the behavior of the program is not 

guaranteed.  

 The following arrays are not distributed 

 Arrays that appear in DISTRIBUTE directives, 

ALIGN directives, INHERIT directives, or DYNAMIC 

directives 

 Arrays that appear in SEQUENCE directives  

 Arrays that appear in PARAMETER statements, 

EQUIVALENCE statements, or NAMELIST 

statements  

 Arrays of type character or derived type  

 Arrays with POINTER attribute  or  TARGET 

attribute  

 Assumed size arrays  

 Arrays in local procedures except for dummy array 
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arguments  

 When an HPF program uses common blocks or interface 

blocks, the same option must be specified to all the files 

that constitutes the HPF program.  

 Distribution specified to each array is displayed with the 

HPF compiler option -Minform=inform.  

 You can use parallelization information files output with 

the HPF compiler option -Mlist2 to judge whether 

distributions of arrays are appropriate.  

=all[:b] Distributes all arrays. 

The binary integer b corresponds one to one, 

from the least significant bit, to axes of arrays 

from the last axis to the first, and the axes that 

correspond to bit 1 are distributed with BLOCK 

distribution. If omitted, only the last axis is 

distributed with BLOCK distribution. 

=rank?[:b] Rank ? arrays are distributed, where ? is an 

integer. 

The binary integer b corresponds one to one, 

from the least significant bit, to axes of arrays 

from the last axis to the first, and the axes that 

correspond to bit 1 are distributed with BLOCK 

distribution. If omitted, only the last axis is 

distributed with BLOCK distribution. 

backslash 

 

 

nobackslash 

 Specifies that the backslash character in quoted 

strings is treated as a normal character rather 

than as an escape character. 

 Specifies that the backslash character in quoted 

strings is treated as an escape character. 

[Default] 

chkhome  Specifies that arrays cannot be a home array of 
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loops if they could be accessed out of bounds in 

the loops. This option prevents run-time errors 

with the message “invalid alignment”, but can 

cause performance degradation. 

commonchk  Detects inconsistencies in declarations of 

COMMON block variables among procedures at 

run-time.  

This option has to be specified to all the 

procedures that constitute an executable 

program.  

The -Mnoentry or -Mnoerrline option cannot 

be used with this option. When any of these is 

also specified, only the option specified last is 

available. 

cprop 

 

 

 

 

nocprop 

 Promote the constant propagation optimization. 

However, the back-end Fortran compiler may 

detect a compile-time error when this 

optimization makes a denominator of division 

zero. 

 The constant propagation optimization is not 

performed on denominators of divisions. 

[Default] 

dclchk 

 

nodclchk 

 Specifies that all variables must have explicit 

declarations. 

 Specifies that variables do not have to be 

declared explicitly. [Default] 

dintrin  The references to the following Fortran intrinsic 

procedures, HPF library procedures, and HPF 

local library procedures are treated as the 

references to the corresponding extended 

procedures whose results are of type 8-byte 

integer.  
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 Fortran intrinsic procedures COUNT, 

LBOUND, MAXLOC, MINLOC, SHAPE, SIZE, 

or UBOUND 

 HPF library procedures  COUNT_PREFIX, 

COUNT_SCATTER, COUNT_SUFFIX, 

GRADE_DOWN, or GRADE_UP, 

 HPF local library procedures 

GLOBAL_SHAPE, GLOBAL_SIZE, 

LOCAL_BLKCNT, LOCAL_LINDEX,  or 

LOCAL_UINDEX 

dlines 

 

 

 

 

nodlines 

 In fixed source form, the HPF compiler treats 

lines containing "*", "D", or "d" at column 1 as 

valid statements. 

In free source form, the compiler treats lines 

beginning with "!!" as valid statements. 

 In fixed source form, the compiler treats lines 

containing "*", "D", or "d" at column 1 as 

comment statements.  

In free source form, the compiler treats lines 

beginning with "!!" as comment statements. 

[Default] 

extend  The HPF compiler accepts 2048-column source 

code. 

f90  Compiles program units as Fortran 90 

procedures. 

This option does not affect procedures whose 

extrinsic kinds are explicitly specified. 

fixed 

free 

 

nofree 

 Assumes source files are written in fixed form. 

 Assumes source files are written in fixed form. 

 Assumes source files are written in fixed form. 

[Default] 
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ftn  Stops after HPF compilation and keeps the 

intermediate output files. 

fullref  The values of all shadow objects are always set 

with those of the corresponding data objects 

even if only part of the shadow objects is 

specified in partial REFLECT directives.  

It might be faster than transferring only part of  

shadow objects because of reuse of data 

transfer information in such cases that patterns 

of partial REFLECT directives change every 

time. 

Note that this option must be used consistently 

to all the procedures which constitute one 

executable program.  

g  Enables the –Mkeepftn option and invokes the 

backend Fortran compiler with the –g option. 

hpfout  Generates HPF source files with the 

suffix .hpf.src in which DISTRIBUTE directives 

specified with the –Mautodist option are 

inserted. 

info  Outputs loop parallelization information into the 

standard output. 

inform Specifies the diagnostic message level.  

=fatal Outputs diagnostic messages with the fatal 

level. 

=severe Outputs diagnostic messages with the severe 

and fatal level. 
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=warn Outputs diagnostic messages with the warning, 

severe and fatal level. [Default] 

=inform Outputs diagnostic messages of all levels. 

keepftn  Generates Fortran intermediate files with 

references to HPF runtime library, in addition to 

an HPF executable file. 

keepstatic  Generates static data initialization files with the 

suffix .d, in addition to an HPF executable file. 

list 

list2 

 

 

 

 

 

 

 

 

 

list3 

 

 

 

 

 

 

 

 

 

 

nolist 

 Generates list files with the suffix .lst. 

 Generates parallelization information list files 

with the suffix .lst, which include parallelization 

and communication information.  

When the Fortran compiler option –report-

format or –report-all is specified together, 

vectorization and shared-memory 

parallelization information is merged into the 

list. Note that line numbers in messages 

generated by the Fortran compiler do not 

correspond to those in HPF source programs in 

this case. 

 Generates parallelization information list files 

with the suffix .lst, which include parallelization 

and communication information and Fortran 

intermediate source images.  

When the Fortran compiler option –report-

format or –report-all is specified together, 

vectorization and shared-memory 

parallelization information is merged into the 

list. Note that line numbers in messages 

generated by the Fortran compiler do not 

correspond to those in HPF source programs in 

this case. 
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 Does not generate list files. [Default]  

local  Compiles all procedures as the LOCAL model 

except for those with explicit extrinsic kinds. 

noentry  Does not generate information for runtime error 

messages. This option can improve the 

execution performance. Note that when 

runtime errors occur, the behavior of the 

program is not guaranteed. Therefore, specify 

this option only to programs that you have 

confirmed run properly.  

This option cannot be used with the option –

Mcommonchk, -Mprof, or –Msubchk. If used, 

only the option specified last is effective. 

noerrline  Does not generate line number information for 

runtime error messages. This option can 

improve the execution performance. Note that 

when a runtime error occurs, the line number 

that caused the error is not displayed. 

Therefore, specify this option only to programs 

that you have confirmed run properly.  

This option cannot be used with the option –

Mcommonchk, -Mprof, or –Msubchk. If used, 

only the option specified last is effective.  

nogenblock  Treats GEN_BLOCK distribution as BLOCK 

distribution. 

noindependent  Disables INDEPENDENT directives and 

parallelizes programs based only on the HPF 

compiler’s analysis. 

nolocal  Disables LOCAL clauses. 

nomapnew  Treats arrays that appear in INDEPENDENT 

loops, are not mapped, and are not reduction 

variables as NEW variables. 
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overlap =size:n Sets the width of shadow areas, which are 

added to axes distributed with BLOCK 

distribution or GEN_BLOCK distribution, to n. 

preprocess  Preprocesses HPF source files regardless of 

suffixes of them. 

r8  Treats variables of type default real as type 

double precision and of type default complex as 

type double precision complex. 

recursive  Allows recursive calls. This option may 

adversely affect performance. Please note that 

not all procedures can be made recursive. For 

example, procedures that modify variables with 

the SAVE attribute or COMMON block variables 

as well as procedures that perform I/O are 

generally not candidates for recursion. 

res2local  Treats RESIDENT clauses as LOCAL clauses. 

scalarnew  Treats all scalar variables that appear 

INDEPENDENT loops and are not reduction 

variables as NEW variables. 

sequence 

 

nosequence 

 Specifies that all variables have the SEQUENCE 

attribute. 

 Specifies that only assumed-size arrays and 

variables that appear in SEQUENCE directives or 

EQUIVALENCE statements have the SEQUENCE 

attribute. [Default] 

serial  Compiles all procedures as the SERIAL model 

except for those with explicit extrinsic kinds. 

subchk  Detects references of arrays out of declared 

bounds along each axis at run-time.  

This option does not check LOCAL procedures.  

The -Mnoentry or -Mnoerrline option cannot 
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be used with this option. When any of these is 

also specified, only the option specified last is 

available. 

upcase 

 

 

noupcase 

 Treats uppercase letters and their lowercase 

counterparts as different. Fortran keywords 

must be in lowercase.  

 Treats uppercase letters and their lowercase 

counterparts as same. [Default] 

 

 

2.3.1 NEC Fortran Compiler Directives 

Major NEC Fortran compiler directives are available. The following directives are not 

supported: 

 

cncall, forced_collapse, loop_count(n), option, outerloop_unroll(n), parallel do 

 

Also, the directive vreg can be specified in the execution part or as the last line of the 

specification part. 

 

Refer to NEC Fortran User’s Guide for details of NEC Fortran compiler directives. 

 

2.3.2 NEC Fortran Compiler Options 

Major NEC Fortran compiler options are available in addition to the common compiler options. 

The following NEC Fortran compiler options are not available. Refer to NEC Fortran User’s 

Guide for details of NEC Fortran compiler options. 

 

-S, -cf, -fsyntax-only, -x, @<file-name>, -fivdep, -floop-count=n, -fopenmp, -pthread, -

fdefault-integer=n, -fdefault-double=n, -fdefault-real=n, -std=standard, -use, -W, -report-

file, -report-append-mode, -dD, -dl, -dM, -dN, -E, -H, -I-, -M, -MD, -MF <filename>, -MP, -

MT <target>, -fpp, -nofpp, -fpp-name, -isysroot, -isystem, -nostdinc, -P, -Wp, -Bdynamic, -

Bstatic, -static, -shared, --sysroot, -B, -fintrinsic-modules-path, -module, --help, -print-file-
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name, -print-prog-name, -noqueue, --help, --version 

 

When the NEC Fortran compiler option –report-all or –report-format is specified, the 

intermediate source parallelized by the HPF compiler is output in the format list and line 

numbers in the intermediate source are displayed in the Fortran compiler messages. When 

the HPF compiler option –Mlist2 or –Mlist3 is specified together, the vectorization and shared-

memory parallelization information is merged into the parallelization information list 

generated by the HPF compiler. 

 

 

2.3.3 NEC MPI Compiler Options 

NEC MPI compiler options -mpiprof, -show, -ve, -static-mpi, and –shared-mpi are available. 

Refer to NEC MPI User’s Guide for details of NEC MPI compiler options. 

 

2.4 Environment Variables 

This section describes environment variables available at compilation time. 

 

 VE_HPF_COMPILER_PATH 

When you use the HPF compiler that is not at the standard path /opt/nec/ve/bin/ve-

hpf, this environment variable enables the omission of specifying the path. For example, 

when you use the HPF compiler /opt/nec/ve/hpf/1.0.0/bin/ve-hpf, perform the 

following commands. 

 

 

 

 

(For bash) 

%> export VE_HPF_COMPILER_PATH=/opt/nec/ve/hpf/1.0.0 

%> export PATH=${VE_HPF_COMPILER_PATH}/bin:$PATH 

%> ve-hpf 
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Chapter3 Execution of HPF Programs 

This chapter describes how to execute HPF programs. 

3.1 Execution of HPF Programs 

Firstly, execute the following command to read the MPI setup script each time you log in to 

a VH, in order to set up the MPI and Fortran compilation environment. The setting is available 

until you log out.  

 

(In the case of bash) 

%> source /opt/nec/ve/mpi/{version}/bin/necmpivars.sh 

(In the case of csh) 

%> source /opt/nec/ve/mpi/{version}/bin/necmpivars.csh 

 

Here, {version} above is the directory name corresponding to the version of NEC MPI you 

use. For example, execute the following command to use NEC MPI version 2.5.0. 

 

(In the case of NEC MPI version 2.5.0 and bash) 

%> source /opt/nec/ve/mpi/2.5.0/bin/necmpivars.sh 

 

It is possible to execute HPF executable programs with the MPI execution command mpirun 

or mpiexec as follows, as with MPI executable programs. 

 

Here, 

 {mpioptions} means MPI runtime options. 

 {hpfexec} means specification of program execution (HPF-execution specification). An 

HPF executable program or a shell script that executes an HPF executable program can 

be specified as {hpfexec}. Please note that only one {hpfexec} can appear in the MPI 

%> mpirun [ {mpioptions} ] {hpfexec> [{args}] [ -hpf {hpfoptions} ] 

%> mpiexec [ {mpioptions} ] {hpfexec} [{args}] [ -hpf {hpfoptions} ] 
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execution command. 

 {args} indicates argments to the HPF executable program. 

 {hpfoptions} indicates HPF runtime options. 

 Descriptions in [] above are optional. 

 

3.2 Runtime Options 

Table 5 shows HPF runtime options. The HPF runtime options must be specified after -hpf in 

the MPI execution command. The following example specifies the HPF runtime option –

version at the execution of the HPF executable program a.out.  

 

The environment variable HPF_OPTS can be used to specify HPF runtime options as follows. 

The specification of HPF runtime options in the MPI execution command takes precedence 

over that with the environment variable. 

      

Table 5  HPF Runtime Options 

HPF Runtime Option Environment Variable Description 

-commmsg HPF_COMMMSG Warning messages are 

output when data transfer 

occurs across procedure 

boundaries. 

-maxxfer [n] HPF_MAXXFER [n] Specifies the maximum size 

of the buffer area used for 

data transfer in MB, which 

must be in the range from 16 

to 1024. The default value is 

%> mpirun –np 2 ./a.out -hpf -version 

%> setenv HPF_OPTS “-version” 
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32. 

-no_stop_message HPF_NO_STOP_MESSAGE Disables the default 

FORTRAN STOP message 

display when a STOP 

statement with no string is 

executed. 

-subchk [warn|fatal] HPF_SUBCHK [warn|fatal] Specifies whether detection 

of access out of declared 

bounds of arrays terminates 

the execution immediately or 

not when the HPF compiler 

option -Msubchk is specified 

at compilation time. The 

optional arguments are as 

follows:  

warn  

The execution continues 

after outputting the 

warning message. 

[Default]  

fatal  

The execution is aborted 

with the error message.  

-version HPF_V Outputs the version of the 

HPF runtime library. 

-V HPF_VERSION Outputs the version of the 

HPF runtime library. 

-zmem [yes|no] HPF_ZMEM [yes|no] Specifies whether 

dynamically allocated arrays 

such as allocatable arrays and 
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mapped arrays are initialized 

with the value zero. The 

optional suboptions are as 

follows:  

yes  

Initialized with the value 

zero.  

no  

Not initialized. [Default]  

 

3.2.1 NEC Fortran Compiler Runtime Environment Variables 

Major runtime environment variables of the NEC Fortran compiler are available. The 

following environment variables have no effect. 

 

VE_FMTIO_OFFLOAD, VE_FMTIO_OFFLOAD_THRESHOLD, VE_FORTn, VE_FORT_FILEINF, 

VE_FORT_FMTBUF[n], VE_FORT_RECLUNIT, VE_FORT_RECORDBUF[n],  

VE_FORT_SETBUF[n], VE_FORT_UFMTENDIAN 

 

Refer to NEC Fortran User’s Guide for details of the environment variables. 

 

3.2.2 NEC MPI Runtime Options 

Major NEC MPI runtime options of NEC MPI are available. The following options cannot be 

used because HPF programs can be executed only on VE. 

 

-vh, -sh, -vpin, -pin_mode, -pin_reserve, -cpu_list, -pin_list 

 

Refer to NEC MPI User’s Guide for details of the runtime options. 

 

3.2.3 NEC MPI Environment Variables 

All NEC MPI environment variables are available. Refer to NEC MPI User’s Guide for details of 
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the environment variables. 
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Chapter4 HPF Programming 

This chapter explains how to parallelize Fortran programs with HPF. The HPF features are 

categorized into directives for data mapping, directives for computation mapping and data 

transfer, and other features. 

 

The syntax rules in this chapter are described with the following conventions: 

 Characters in Bold face are written literally as shown. 

 Symbols enclosed in <> are replaced with particular symbols in actual directives. 

 Characters in italics represent expressions or names of objects. 

 Symbols enclosed in [] are optional. 

 ,... represents optionally repeated item, separated with a comma. 

 

4.1 Data Mapping 

This section describes usage of directives for data mapping. 

 

4.1.1 DISTRIBUTE Directive 

Each process that executes an HPF programs is called an abstract processor. The number of 

the abstract processors is the same as that of processes that execute an HPF program. 

It is possible to distribute axes of arrays onto abstract processors using DISTRIBUTE 

directives. The HPF compiler decides optimal computation mapping and generates necessary 

data transfer according to the data mapping and how arrays are accessed. 

. 
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The syntax of the DISTRIBUTE directive is as follows: 

Figure 6  Syntax of DISTRIBUTE Directive 

 

In the case of specifying a processor arrangement (See subsection 4.1.3) 

!HPF$ DISTRIBUTE a ( <distribution-format>,… ) ONTO p 

 or  

!HPF$ DISTRIBUTE ( <distribution-format>,… ) ONTO p :: a,… 

 a indicates the name of an array or template 

 p indicates the name of a processor arrangement 

 <distribution-format> is *, BLOCK[(<expression>)], GEN_BLOCK(map), or 

CYCLIC[(<expression>)] 

 * specifies that the corresponding axis of the array or template is not 

distributed. 

 BLOCK specifies that the corresponding axis of the array or template is 

distributed evenly. The width of the distribution can be specified with the 

optional (<expression>). The width is calculated as follows by default: 

(Extent along the corresponding axis of the array or template - 1)/(Extent 

of the corresponding axis of the processor arrangement) 

 GEN_BLOCK specifies that the corresponding axis of the array or template is 

distributed unevenly. (map) specifies the number of array elements distributed 

onto each element along the corresponding axis of the processor arrangement. 

The values of the one-dimensional array map must be defined in advance. 

 CYCLIC specifies that the corresponding axis of the array or template is 

distributed in a round-robin fashion. (<expression>) specifies the width of the 

distribution. When the width of the distribution is omitted, the width is 1.  

 

In the case of not specifying a processor arrangement 

!HPF$ DISTRIBUTE a ( <distribution-format>,… ) 

 or  

!HPF$ DISTRIBUTE ( <distribution-format>,… ) :: a,… 
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Figure 7 shows an example of the BLOCK distribution, which is the most common 

distribution. 

Figure 7  Example of the DISTRIBUTE Directive 

 

When this code is executed on four abstract processors p(1), p(2), p(3), and p(4), elements 

of the arrays are distributed onto the abstract processors as shown in Figure 8. 

 

 

Figure 8  One-Dimensional Distribution onto Four Abstract Processors 

 

Since the corresponding elements of the arrays a and b are distributed onto the same 

abstract processor, the HPF compiler assigns the computation evenly onto the abstract 

processors and it is executed without data transfer as shown in Figure 9.  

 

 

Figure 9  Parallel Execution of the Loop by Four Abstract Processors 

 

 

The DISTRIBUTE directive in Figure 10 specifies that two-dimensional array a is distributed 

with the BLOCK distribution along the second axis. 

real a(11), b(11) 

!HPF$ DISTRIBUTE (BLOCK) :: a, b 

          : 

       do i=1, 11 

         b(i) = a(i) + 1 

       enddo 
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Figure 10  One-Dimensional BLOCK Distribution of Two-Dimensional Array 

 

When four abstract processors p(1), p(2), p(3), and p(4) execute the code in parallel, 

elements of the array a are distributed onto the abstract processors as shown in Figure 11. 

 

 

 

Figure 11  One-Dimensional Distribution of Two-Dimensional Array onto Four 

Abstract Processors 

 

The width of the BLOCK distribution can be specified explicitly as shown in Figure 12.  

Figure 12  Explicit Width of the BLOCK Distribution 

 

Note that any element of arrays must be distributed onto at least one abstract processor. For 

example, the code in Figure 12 cannot be executed on three abstract processors because the 

array elements a(10) and a(11) are not distributed onto any abstract processors. 

 

Array elements can be distributed in a round-robin fashion with the CYCLIC distribution as 

shown in Figure 13.        

real a(11,11) 

!HPF$ DISTRIBUTE (*, BLOCK) :: a 

real a(11)      

!HPF$ DISTRIBUTE (BLOCK(3)) :: a         
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Figure 13  CYCLIC Distribution 

 

When the code is executed on four abstract processors p(1), p(2), p(3), and p(4), elements 

of the array a are distributed as shown in Figure 16. 

 

 

Figure 14  CYCLIC Distribution onto Four Abstract Processors 

 

The width of the CYCLIC distribution can be specified explicitly as shown in Figure 15.  

Figure 15  Explicit Width of the CYCLIC Distribution 

 

When the code is executed on four abstract processors p(1), p(2), p(3), and p(4), elements 

of the array a are distributed as shown in Figure 16. 

 

 

Figure 16  CYCLIC(2) Distribution onto Four Abstract Processors 

 

Array elements can be distributed unevenly using the GEN_BLOCK distribution, generalized 

BLOCK distribution, as shown in Figure 17. 

real a(11)      

!HPF$ DISTRIBUTE (CYCLIC) :: a       

real a(11)      

!HPF$ DISTRIBUTE (CYCLIC(2)) :: a       
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Figure 17  GEN_BLOCK Distribution 

 

Here, the one-dimensional integer array map specified in parentheses after the keyword 

GEN_BLOCK is called a mapping array.  The size of the mapping array must be equal to or 

larger than the extent along the corresponding axis of the processor arrangement and the 

sum of the values of the mapping array elements must be the same as the extent along the 

corresponding axis of the distributed array. 

When the code is executed on four abstract processors p(1), p(2), p(3), and p(4), elements 

of the array a are distributed as shown in Figure 18. 

 

 

Figure 18  GEN_BLOCK Distribution onto Four Abstract Processors 

 

The CYCLIC distribution and GEN_BLOCK distribution are useful for balancing the load. For 

example, the code in Figure 19 calculates the sum of two triangular matrices.  

Figure 19  Sum of Triangular Matrices 

 

real a(13) 

integer map(4) 

data map/6,3,2,2/ 

!HPF$ DISTRIBUTE (GEN_BLOCK(map)) :: a       

real a(8,8), b(8,8), c(8,8) 

  : 

do j=1, 13 

do i=1,j 

a(i,j) = b(i,j) + c(i,j) 

         enddo 

       endo       
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If the second axis of the arrays are distributed with BLOCK distribution onto four abstract 

processors as shown in Figure 20, the load will be unbalanced as the abstract processors 

p(1), p(2), p(3), and p(4) execute 3, 7, 11, and 15 assignment statements, respectively as 

shown in Figure 21. 

Figure 20  BLOCK Distribution along the Second Axis 

 

 

Figure 21  Unbalanced Loads between Abstract Processors 

 

The load balance is improved by distributing arrays along the second axis with the 

GEN_BLOCK distribution onto four abstract processors as shown in Figure 22, as the abstract 

processors p(1), p(2), p(3), and p(4) execute 10, 11, 7, and 8 assignment statements, 

respectively as shown in Figure 23. 

Figure 22  GEN_BLOCK Distribution along the Second Axis 

 

 

real a(8,8), b(8,8), c(8,8) 

!HPF$ DISTRIBUTE (*, BLOCK) :: a, b, c  

real a(8,8), b(8,8), c(8,8) 

integer map(4) 

       data map/4,2,1,1/ 

!HPF$ DISTRIBUTE (*, GEN_BLOCK(map)) :: a, b, c 
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Figure 23  Sum of the Triangular Matrices with the GEN_BLOCK Distribution 

 

4.1.2 Selection of Distribution Format 

Appropriate distribution format depends on the access pattern of arrays. In many cases, 

when the amount of computation on each array element is approximately equal, BLOCK 

distribution is suitable. Otherwise, GEN_BLOCK distribution is suitable. It is easier for the HPF 

compiler to parallelize loops that access arrays distributed with these distribution formats 

efficiently because the granularity of parallelization tends to be large and consecutive array 

elements are allocated on the same abstract processor. Moreover, it is easier to achieve high 

performance because efficient data transfer patterns such as shift transfer described later are 

applicable.   

 

4.1.3 PROCESSORS Directive 

It is possible to declare arrangements of abstract processors (processor arrangements) with 

the PROCESSORS directive. Processor arrangements declared as arrays called processor 

arrays. The size of processor arrays must be the same as the number of processes.  

The syntax of the PROCESSORS directive is as follows: 
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Figure 24  Syntax of PROCESSORS Directive 

 

The shapes of processor arrays can be chosen freely according to programming convenience. 

The ranks of processor arrays correspond to how many axes of arrays are distributed onto 

processes and how many loop nests are parallelized. 

Figure 25  One-Dimensional Distribution onto a Rank-One Processor Array 

 

Figure 26  Two-Dimensional Distribution onto a Rank-Two Processor Array 

 

Please note that the total number of parallelization is always the same as the number of 

processes. In many cases, one-dimensional parallelization using rank-one processor arrays is 

suitable for inhibiting overhead for parallelization. 

When you would like to decide the number of abstract processors at runtime, the intrinsic 

!HPF$ PROCESSORS p ( <>,… ) 

 or  

!HPF$ PROCESSORS ( <>,… ) :: p,… 

 p indicates the name of a processor arrangement 

 <> indicates bounds along each axis of a processor array. For example, in the 

following PROCESSORS directive: 

!HPF$ PROCESSORS p(n1,n2) 

The number of abstract processers is the same as the size of the processor array p, 

n1*n2, and the rank of the processors array, 2, is equal to the number of distributed 

axes of arrays. 

       real a(100,100) 

!HPF$ PROCESSORS p(4) 

!HPF$ DISTRIBUTE a(*, BLOCK) ONTO p 

       real a(100,100) 

!HPF$ PROCESSORS p(2,2) 

!HPF$ DISTRIBUTE a(BLOCK,BLOCK) ONTO p 
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function NUMBER_OF_PROCESSORS(), which returns the number of processes, is useful. 

 

Figure 27  Use of the Intrinsic Function NUMBER_OF_PROCESSORS() 

 

Actually, when the declaration of processor arrangements is omitted, arrays are automatically 

distributed onto a processor array whose size is the same as the number of processes. 

Therefore, the DISTRIBUTE directive in Figure 28 has the same meaning as that in Figure 27. 

In particular, the declaration of processor arrangements is not necessary for one-dimensional 

distribution. 

 

Figure 28  Omission of PROCESSORS Directives 

 

It is possible to declare processor arrays with different shapes as shown in Figure 29 as long 

as their sizes are identical. However, use of processor arrays with different shapes can lead 

unnecessary data transfers, because it is more difficult for the HPF compiler to judge whether 

elements of arrays distributed on processor arrays with different shapes are on the same 

abstract processor or not.  

Figure 29  Processor Arrays with Different Shapes 

 

 

 

       real a(100,100) 

!HPF$ PROCESSORS p(NUMBER_OF_PROCESSORS()) 

!HPF$ DISTRIBUTE a(*, BLOCK) ONTO p 

       real a(100,100) 

!HPF$ DISTRIBUTE a(*, BLOCK) 

       real a(100,100), b(100,100) 

!HPF$ PROCESSORS p1(4), p2(2,2) 

!HPF$ DISTRIBUTE a(*, BLOCK) ONTO p1 

!HPF$ DISTRIBUTE b(BLOCK, BLOCK) ONTO p2 
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4.1.4 ALIGN Directive 

When necessary data sizes are decided at runtime and sizes of arrays are declared larger 

than needed, some abstract processors can have no data targeted for computation since the 

BLOCK distribution distributes arrays evenly. For example, when the value of the variable n 

is six and four abstract processors p(1), p(2), p(3), and p(4) execute the code in Figure 30, 

the array elements targeted for the computation are distributed only onto the abstract 

processors p(1) and p(2), and the abstract processors p(3) and p(4) will be idle.  

Figure 30  Necessary Data Size is Determined at Runtime 

 

When necessary data sizes are determined at runtime, it is better to allocate arrays with 

needed sizes using allocatable arrays or automatic arrays as shown in Figure 31. 

Figure 31  Distribution Using Allocatable Arrays and Automatic Arrays 

 

real a(11), b(11) 

!HPF$ DISTRIBUTE (BLOCK) :: a, b 

       read(*,*)n 

       do i=1, n 

         b(i) = a(i) + 1 

       enddo 

real, allocatable :: a(:)       ! Allocatable array 

!HPF$ DISTRIBUTE (BLOCK) :: a 

       read(*,*)n 

       allocate(a(n)) 

          : 

       call sub(a,n) 

          : 

       end 

 

       subroutine sub(a,n) 

       real a(n)                   ! Automatic array 

!HPF$ DISTRIBUTE (BLOCK) :: a 
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Note that it is not determined until runtime which element of an allocatable array is 

distributed onto which abstract processor since bounds of the array are decided at runtime. 

When the bounds of the one-dimensional array a and b, which are distributed onto the 

processor array p with the BLOCK distribution, are a(1:10) and b(1:11), respectively as 

shown in the code Figure 32, the array elements a(6) and b(6) are allocated on the abstract 

processor p(2) and p(1), respectively as shown in Figure 33. Therefore, execution of the 

assignment statement a(6)=b(6) requires the data transfer. As this example shows, when 

declared bounds of arrays are unknown at compilation time, data mapping only with 

DISTRIBUTE directives can lead inefficient executable programs even if the bounds are 

actually the same. 

Figure 32  BLOCK Distribution of Allocatable Arrays 

 

 

Figure 33  BLOCK Distribution Leads Data Transfer 

 

The ALIGN directive is effective for such cases. The ALIGN directive specifies the relative 

location of multiple arrays (alignment). The syntax of the ALIGN directive is as follows: 

real, allocatable :: a(:), b(:)       ! Allocatable arrays 

!HPF$ PROCESSORS p(2) 

!HPF$ DISTRIBUTE (BLOCK) ONTO p :: a, b 

       read(*,*)n1, n2 

       allocate(a(n1), b(n2)) 

       do i=1,10 

         a(i) = b(i) 

       enddo 
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Figure 34  Syntax of ALIGN Directive 

 

The ALIGN directive in Figure 35 specifies that the array element a(i) is mapped onto the 

same abstract processor as the array element b(i) is mapped onto as shown in Figure 36. 

The base array b of the ALIGN directive is called an align target. The data mapping of the 

array a is automatically determined by the relative position with the align target b, when the 

array b is distributed with a DISTRIBUTE directive. It is known at compilation time that the 

array elements b(i) and a(i) are always allocated on the same abstract processor by the 

correspondence between subscripts of the arrays, though the bounds of the arrays are 

unknown until runtime. Therefore, the HPF compiler can generate efficient parallel code 

because it can judge that no data transfer is needed. 

!HPF$ ALIGN a ( <i>,… ) WITH t( <f(i)>,… ) 

 or  

!HPF$ ALIGN ( <i>,… ) WITH t( <f(i)>,… ) :: a,… 

 a indicates the name of an array 

 t indicates the name of an array or template 

 <i> indicates an integer scalar variable or *. * specifies the axis is not aligned. 

 <f(i)> indicates a linear expression s*<i>+o, or *, where s and o are integer 

expressions. 

 When <f(i)> is a linear expression s*<i>+o, the element <i> of array a is 

aligned with the element s*<i>+o of the align-target t. 

 When <f(i)> is *, the whole array a is replicated along the axis of the processor 

array to which the axis of the align-target t to which * is specified corresponds.  
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Figure 35  Data Mapping with the ALIGN Directive 

 

 

Figure 36  Effect of the ALIGN Directive 

 

The ALIGN directive is also effective for assumed-shape arrays and automatic arrays whose 

bounds are declared using different variables as shown in Figure 37. 

Figure 37  Assumed-Shape Arrays and Automatic Arrays 

 

The ALIGN directive is also effective for the case that arrays with different bounds are 

accessed in a loop as shown in Figure 38. If arrays with different bounds are distributed with 

real, allocatable :: a(:), b(:)       ! Allocatable arrays 

!HPF$ PROCESSORS p(2) 

!HPF$ ALIGN a(i) WITH b(i) 

!HPF$ DISTRIBUTE (BLOCK) ONTO p :: b 

       read(*,*)n1, n2 

       allocate(a(n1), b(n2)) 

       do i=1,10 

         a(i) = b(i) 

       enddo 

 : 

call sub(a,100, 100) 

end 

 

subroutine sub(a,n,m) 

real :: a(:)       ! Assumed shape arrays 

real :: b(n), c(m)  ! Automatic arrays 
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the BLOCK distribution, the ranges of the array sections allocated on each abstract processor 

also become different as shown in Figure 39. This causes data transfer at runtime of the loop. 

The data transfer can be inhibited with the ALIGN directive as shown in Figure 40 since the 

array elements a(i) and b(i) are mapped onto the same abstract processors as the array 

element c(i), which is accessed in the same iteration of the loop, is mapped onto.  

Figure 38  Arrays with Different Declared Bounds 

 

 

Figure 39  BLOCK Distribution of Arrays with Different Declared Bounds 

 

 

Figure 40  Alignment of Arrays with Different Declared Bounds 

 

real a(0:9), b(10), c(0:10) 

 

do i=1,9 

  c(i) = a(i) + b(i) 

enddo 
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Note that the declared bounds of the align target c ((0:10) in this case) must include the 

declared bounds along the corresponding axis of the aligned arrays a and b ((0:9) and (1:10), 

respectively in this case). This is because if any elements of aligned arrays run out of the 

declared bounds along the corresponding axis of the align target, the elements are not 

mapped onto any abstract processor, which causes errors at compilation time or runtime.  

 

4.1.5 TEMPLATE Directive 

In Figure 41, it seems good to align a(i) and b(i) which are accessed in the same iteration of 

the loop. However, since the declared bounds of the arrays a and b are different, alignment 

of either of them with the other causes some elements to run out of the align target. To 

declare an array whose bounds include the bounds of both arrays will resolve the problem as 

shown in Figure 38, but this wastes memory just for specifying the data mapping.  

Figure 41  Arrays with Different Declared Bounds 

 

 

Figure 42  Alignment in which Aligned Arrays run out of the Align Target 

 

The TEMPLATE directive enables the declaration of templates, virtual arrays that do not use 

memory, and is useful for such cases. The syntax of the TEMPLATE directive is as follows: 

 

real a(0:9), b(10) 

 

do i=1,9 

  b(i) = a(i) + 1.0 

enddo 
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Figure 43  Syntax of TEMPLATE Directive 

 

By declaring the template t whose bounds include the bounds along the corresponding axes 

of arrays a and b, aligning the arrays with the template, and distributing the template as 

shown in Figure 44, it is possible to map the corresponding elements of the arrays a and b 

onto the same abstract processor so that no data transfer occurs at the execution of the loop 

in Figure 41.   

 

 

Figure 44  Data Mapping Using a Template 

 

The subscripts of the arrays a and b are shifted by one in the loop in Figure 45 though the 

declared bounds of them are identical. Therefore, data mapping only with the DISTRIBUTE 

directive can also cause data transfer. Alignment of a(i+1) and b(i) with the ALIGN directive 

as shown in Figure 46 enables execution of the loop without data transfer in such cases. Also 

in this example, the template t whose bounds include the bounds of the arrays a and b is 

used as the align target since the direct alignment of a(i+1) and b(i) causes the run-out 

alignment. 

!HPF$ TEMPLATE t ( <>,… )  

 or  

!HPF$ TEMPLATE ( <>,… ) :: t,… 

 t indicates a template 

 <> indicates bounds along each axis of templates  
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Figure 45  Loop where Arrays are Accessed with Different Subscripts 

 

 

Figure 46  Alignment of Arrays Accessed with Different Subscripts 

 

4.1.6 Summary of Data Mapping in HPF 

Data mapping of arrays can be specified with the DISTRIBUTE directive and ALIGN directive 

in HPF. In general, by specifying alignment of arrays with a base array or template with ALIGN 

directives and distributing the base array or template with a DISTRIBUTE directive, data 

mapping of all arrays is determined as shown in Figure 47. 

 

 

real a(10), b(10) 

 

do i=1,9 

  b(i) = a(i+1) + 1.0 

enddo 
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Figure 47  Data Mapping in HPF 

 

Arrays that do not appear in a DISTRIBUTE directive nor ALIGN directive and scalar variables 

are replicated on all abstract processors. The replication is suitable for variables that are only 

read because all abstract processors can read them without data transfer.  

 

4.1.7 Variables That Cannot Be Mapped 

When an actual argument and dummy argument whose shapes are different are associated 

based on the Fortran sequence association or when variables whose shapes are different are 

associated via COMMON blocks and EQUIVALENCE statements based on the Fortran storage 

association, they must appear in the SEQUENCE directive in the specification part of the 

scoping unit. Variables specified in the SEQUENCE directive cannot be mapped. The syntax 

of the SEQUENCE directive is shown in Figure 48. The NOSEQUENCE directive can be used 

for variables you want to map when the HPF compiler option –Msequence is specified.  

Figure 48  Syntax of SEQUENCE Directive 

!HPF$ [NO] SEQUENCE  [ [ :: ] s,… ]  

 s is the name of an array or /common block name/. When s,… is omitted in the 

SEQUENCE directive, it is treated as if it contained all common block and variables 

that are not mapped explicitly. When s,… is omitted in the NOSEQUENCE directive, 

it is treated as if it contained all common block and variables. 
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4.2 Computation Mapping and Data Transfer 

This section explains how to use directives for improving computation mapping and data 

transfer. 

 

4.2.1 INDEPENDENT Directive 

The INDEPENDENT directive enables programmers to teach the HPF compiler that loops are 

parallelizable as shown in Figure 49. Loops are parallelizable when they do not have loop-

carried dependencies. The loops which immediately follow INDEPENDENT directives are 

called INDEPENDENT loops. 

Figure 49  INDEPENDENT Loop 

 

Figure 50 shows examples of the loop-carried dependencies and these loops cannot be 

parallelized. In short, loops that define data in an iteration which is defined or referenced in 

other iterations, or loops that has branches out of the loops are not parallelizable. 

!HPF$ INDEPENDENT 

do i=1,n 

a(i) = i 

enddo 
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Figure 50  Loop-Carried Dependency 

! True Dependency: The array element a(i) is referenced after definition 

do i=1,n 

a(i) = a(i) + a(i-1) 

enddo 

 

! Anti Dependency: The array element a(i) is defined after reference 

do i=1,n 

a(i) = a(i) + a(i+1) 

enddo 

 

! Output Dependency: The scalar variable s is defined after definition 

do i=1,n 

if(a(i) > 0.0) s = a(i) 

enddo 

 

! Control Dependency: Execution of the loop can terminate in the middle of the iterations 

do i=1,n 

if(a(i) > 0.0)goto 99 

enddo 

99    continue 
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The syntax of the INDEPENDENT directive is as follows: 

Figure 51  Syntax of the INDEPENDENT Directive 

 

The HPF compiler parallelizes loops automatically without INDEPENDENT directives as if they 

were INDEPENDENT loops when it can judge that the loops are parallelizable. But the HPF 

Perfectly Parallelizable Loops 

!HPF$ INDEPENDENT [, NEW( v,… ) ] 

 v indicates the name of a variable (NEW variable) 

 

Parallelizable Loops with Reduction  

!HPF$ INDEPENDENT [, NEW( v,… ) ], <REDUCTION clause>,… 

 v indicates the name of a variable (NEW variable) 

 <REDUCTION clause> is 

REDUCTION( [ <reduction-kind1> : ] r,… ) 

 or  

REDUCTION( [ <reduction-kind2> : ] r /p,…/,… ) 

 <reduction-kind1> is +, *, .AND., .OR., .EQV., .NEQV., MAX, MIN, IAND, 

IOR, or IEOR 

 r indicates the name of a reduction-variable 

 <reduction-kind2> is FIRSTMAX, FIRSTMIN, LASTMAX, or LASTMIN 

 p indicates the name of a position variable 

 When <reduction-kind1> : is omitted, reduction assignments must be 

described any of the following forms. 

r = r <op> <expr>  or  r = <expr> <op> r 

or 

r = <f(r, <expr>)>  or  r = <f(<expr>, r)> 

 r indicates the name of a reduction-variable 

 <op> indicates a reduction operator *, /, +, -, .AND., .OR., .EQV.,  

or  .NEQV. 

 <expr> indicates an expression that does not include the reduction 

variables and is estimated before the operation <op>. 

 <f()> indicates a reference to the function MAX, MIN, IAND, IOR, or 

IEOR 
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compiler sometimes fails to judge parallelizable loops as parallelizable depending on access 

patterns of arrays in them. When the parallelization information list or diagnostic messages 

show that parallelizable loops are not parallelized or unnecessary data transfers are generated, 

insertion of INDEPENDENT directives may improve execution performance of HPF programs 

significantly. 

The loop nest in Figure 52 can be parallelized only with the data transfer between neighboring 

abstract processors (shift transfer) by assigning each iteration of the loop nest to the abstract 

processor that has the left hand side g(j,inew) of the assignment statement, because the left 

hand side g(:,inew) and the right hand side g(:,iold) never overlap in the loop nest. However, 

the HPF compiler currently cannot find that the values of the variables iold and inew are 

always different, and fails to parallelize the loop nest.  

Figure 52  Example of a Loop Nest Not Parallelized Automatically 

 

Compiling the code with the HPF compiler option –Minfo displays the following diagnostic 

messages.  

 

7, Invariant assignments hoisted out of loop 

8, Distributing inner loop; 2 new loops 

  expensive communication: scalar communication (get_scalar) 

expensive communication: scalar communication (get_scalar) 

 

The two diagnostic messages “expensive communication: scalar communication (get_scalar)” 

       subroutine sub(n, ncycles, g) 

real g(n+2,2) 

!HPF$ DISTRIBUTE g(BLOCK,*) 

 

iold=1 

inew=2 

do it=1, ncycles 

do j = 2, n+1 

g(j,inew) = g(j-1,iold) + g(j+1,iold) + g(j,iold) 

enddo 

enddo 

iold = 3 - iold 

inew = 3 - inew 

enddo 
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show that high-overhead data transfers are generated. You can find the automatic 

parallelization is not successful since the necessary data transfers are only the low-overhead 

shift transfer. In such cases, insert the INDEPENDENT directive immediately before the do j 

loop as shown in Figure 53. 

Figure 53  Insertion of the INDEPENDENT Directive 

 

Then compiling the code with the HPF compiler option –Minfo displays the following diagnostic 

messages, which show the loop nest is parallelized well without high-overhead data transfers. 

 

7, Invariant communication calls hoisted out of loop 

9, Independent loop parallelized 

 

4.2.2 NEW Clause 

The loop in Figure 54 has a loop-carried dependency and is not parallelizable because the 

scalar variable s is defined and referenced in multiple iterations of the loop.  

Figure 54  Loop with a Work Variable 

       subroutine sub(n, ncycles, g) 

real g(n+2,2) 

!HPF$ DISTRIBUTE g(BLOCK,*) 

 

iold=1 

inew=2 

do it=1, ncycles 

!HPF$    INDEPENDENT 

do j = 2, n+1 

g(j,new) = g(j-1,iold) + g(j+1,iold) + g(j,iold) 

enddo 

enddo 

iold = 3 - iold 

inew = 3 - inew 

enddo 

       do i=1,n 

s = sqrt(a(i)**2 + b(i)**2) 

c(i) = s 

enddo 
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However, the INDEPENDENT directive with the NEW clause that specifies the variable s as 

shown in Figure 55 can be used to specify that the loop can be parallelized by using distinct 

memory areas for the variable s in distinct iterations of the loop. Variables specified in NEW 

clauses are called NEW variables. 

Figure 55  INDEPENDENT Directive with the NEW Clause 

 

Note that values of NEW variables become undefined after execution of the INDEPENDENT 

loops. Therefore, if the NEW variables (s in the example above) are referenced without 

defining them after execution of the INDEPENDENT loop, the result of execution is not 

guaranteed.  

 

The HPF compiler usually detects scalar work variables and treats them as NEW variables 

automatically. As for array work variables, users have to insert INDEPENDENT directives with 

NEW clauses that specify them, since the HPF compiler cannot detect them automatically.  

For example, the arrays u and flux are used as array work variables and defined and 

referenced in each iteration of the loop nest in Figure 56. The do k loop, which corresponds 

to the distributed axis of the array f, can be parallelized without data transfers using distinct 

memory areas for these arrays in distinct iterations of the do k loop.  

!HPF$ INDEPENDENT, NEW(s) 

       do i=1,n 

s = sqrt(a(i)**2 + b(i)**2) 

c(i) = s 

enddo 
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Figure 56  Loop Nest with Array Work Variable 

 

Compiling the code with the HPF compiler option –Minfo displays the following diagnostic 

messages. 

 

     9, Distributing loop; 2 new loops 

        1 FORALL  generated 

        2 FORALLs generated 

        no parallelism: replicated array, u 

        no parallelism: replicated array, flux 

        no parallelism: replicated array, flux 

    10, Independent loop 

    16, Independent loop 

        2 FORALLs generated 

subroutine rhs(f, u, n1, n2, n3) 

common /com/c1, c2, q 

dimension flux(2,n1), u(2,n1) 

dimension f(2, n1, n2, n3) 

!HPF$ DISTRIBUTE F(*,*,*,BLOCK) 

 

      do k=2, n3-1 

do j=2,n2-1 

do i=1,n1 

do m=1,2 

u(m, i) = c1 –c2 

enddo 

flux(1, i) = q * u(1,i) 

flux(2, i) = q * u(2,i) 

enddo 

do i=2, n1-1 

f(1,i,j,k) = f(1,i,j,k) * (flux(1,i+1) – flux(1, i-1)) 

f(2,i,j,k) = f(2,i,j,k) * (flux(2,i+1) – flux(2, i-1)) 

          enddo 

        enddo 

      enddo 
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The diagnostic messages “10, Independent loop” and “16, Independent loop” show that the 

do m loop in line 10 and do i loop in line 16 are parallelizable. However, the most important 

loop do k is not detected as parallelizable. Then insert the INDEPENDENT directive with the 

NEW clause that specifies the arrays u and flux, and the do variables of the inner do loops j, 

i, and m immediately before the do k loop as shown in Figure 57.  

Figure 57  INDEPENDENT Directive with Array NEW Variables 

 

Compiling the code with the HPF compiler option –Minfo displays the following diagnostic 

messages, which show the do k loop in line 8 is parallelized as an INDEPENDENT loop. 

 

subroutine rhs(f, u, n1, n2, n3) 

common /com/c1, c2, q 

dimension flux(2,n1), u(2,n1) 

dimension f(2, n1, n2, n3) 

!HPF$ DISTRIBUTE F(*,*,*,BLOCK) 

 

!HPF$ INDEPENDENT, NEW(u, flux, j, i, m) 

 do k=2, n3-1 

do j=2,n2-1 

do i=1,n1 

do m=1,2 

u(m, i) = c1 –c2 

enddo 

flux(1, i) = q * u(1,i) 

flux(2, i) = q * u(2,i) 

enddo 

do i=2, n1-1 

f(1,i,j,k) = f(1,i,j,k) * (flux(1,i+1) – flux(1, i-1)) 

f(2,i,j,k) = f(2,i,j,k) * (flux(2,i+1) – flux(2, i-1)) 

          enddo 

        enddo 

      enddo 
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   8, Independent loop parallelized 

11, Independent loo 

17, Independent loop 

 

When INDEPENDENT loops are nested, the INDEPENDENT loop to which a NEW clause must 

be specified is the innermost one that defines the NEW variable. In the example Figure 58, 

the NEW clause that specifies the work variable s, which is defined in the loops do i and do j, 

must be specified in the INDEPENDENT directive to the innermost do j loop. 

Figure 58  NEW Variable Defined in Multiple INDEPENDENT Loops 

 

When all scalar variables defined in loops in a program are NEW variables except for reduction 

variables, which are explained in the next subsection, explicit NEW clauses for the scalar 

variables can be omitted using the HPF compiler option –Mscalarnew. Also, when all arrays 

that are not mapped and defined in loops in a program are NEW variables except for reduction 

variables, explicit NEW clauses for the arrays can be omitted using the HPF compiler option 

–Mnomapnew.  

In the code Figure 57, since all scalar variables k, i, j, and m, and all non-mapped arrays u 

and flux that are defined in the loop nest, are NEW variables, the HPF compiler treats these 

variables as NEW variables by inserting the INDEPENDENT directive without the NEW clause 

and compiling the code with the HPF compiler options –Mscalarnew and –Mnomapnew.  

 

 

!HPF$ INDEPENDENT, NEW(j) 

do i=1, n 

!HPF$   INDEPENDENT, NEW(s) 

         do j=1,n 

           s = sqrt(a(i,j)**2 + b(i,j)**2) 

           c(i,j) = s 

         enddo 

       enddo 
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4.2.3 REDUCTION Clause 

The loop in Figure 59 executes the same operation (addition) repeatedly and accumulates 

the result value on a variable (r, in this case). The INDEPENDENT directive cannot be specified 

to this loop because of the loop-carried dependency on the variable r. However, since addition 

is associative and commutative, abstract processors can execute the loop almost in parallel 

by storing the sum of the elements of the array a that are mapped on each abstract processor 

in a temporal area allocated on itself (local reduction) and then adding up the values of the 

temporal areas on all abstract processors while transferring them (global reduction). This 

kind of computation is called reduction computation and the result variable of the reduction 

computation (r, in this case) is called a reduction variable.  

 

Figure 59  Reduction Loop 

 

The INDEPENDENT directive with the REDUCTION clause that specifies the reduction 

variables as shown in Figure 60 can be specified to loops that perform reduction computation. 

It is not correct to specify reduction variables in a NEW clause, since the values of reduction 

variables have to be accumulated across iterations of loops. 

       real a(10) 

!HPF$ PROCESSORS p(2) 

!HPF$ DISTRIBUTE a(BLOCK) ONTO p 

 

      r=0 

      do i=1,10 

        r = r + a(i) 

      enddo 
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Figure 60  INDEPENDENT Directive with REDUCTION Clause 

 

When INDEPENDENT loops that perform reduction computation are nested, the REDUCTION 

clause must be specified to the outermost INDEPENDENT loop. For example, since both the 

loops do i and do j perform reduction computation on the variable s in the code Figure 61, 

the REDUCTION clause for the variable s must be specified in the INDEPENDENT directive to 

the outermost INDEPENDENT loop do i.  

 

Figure 61  Where to Specify the REDUCTION Clause 

 

   

4.2.4 Parallelization of Loops with Reference to Procedures 

Loops that contain references to procedures as shown in Figure 62 cannot be parallelized 

automatically since it is not possible to analyze at compilation time whether the loops are 

       real a(10) 

!HPF$ PROCESSORS p(2) 

!HPF$ DISTRIBUTE a(BLOCK) ONTO p 

 

      r=0 

!HPF$ INDEPENDENT, REDUCTION(r) 

      do i=1,10 

        r = r + A(I) 

      enddo 

!HPF$ INDEPENDENT, NEW(j),REDUCTION(s) 

      do i=1,n 

!HPF$  INDEPENDENT 

        do j=1,n 

          s = s + a(i,j) 

        enddo 

      enddo 
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parallelizable. 

 

Figure 62  Loop with a Reference to a Procedure 

 

Each iteration of the loop do i in Figure 62 invokes the subroutine sub and a column of the 

two-dimensional array a passed as the argument is defined in it. Since variables except for 

the argument are not defined and no I/O is performed, the loop is actually parallelizable. In 

such cases, the EXTRINSIC procedure feature that enables HPF procedures to invoke Fortran 

procedures can be used to parallelize the loop. With the EXTRINSIC procedure feature, HPF 

procedures can invoke procedures that are not HPF or global model by declaring an 

EXTRINSIC prefix as shown in Figure 63 at the beginning of the PROGRAM statement, 

FUNCTION statement, SUBROUTINE statement, or MODULE statement. Local model and 

serial model are available in addition to global model. The local model procedures are 

executed by each abstract processer independently like MPI procedures. The serial model 

procedures are executed only by one abstract processor. 

 

 

 

 

      integer a(100,100) 

!HPF$ DISTRIBUTE A(*,BLOCK) 

         : 

      do i=1,100 

        call sub(a(:,i)) 

      enddo 

          : 

      end 

      subroutine sub(a) 

      integer a(100) 

      do j=1,100 

        a(j) = j 

      enddo 

      end 
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Figure 63  EXTRINSIC Prefix 

 

 

The following description as shown in Figure 64 makes it possible to parallelize the loop. 

 

 Declare the procedure referenced in the loop as EXTRINSIC(Fortran_LOCAL) in the 

explicit interface (interface block). 

 Declare EXTRINSIC(Fortran_LOCAL) at the beginning of the SUBROUTINE statement of 

the referenced procedure. 

 Specify the INDEPENDENT directive to the loop. 

 

The HPF compiler parallelizes the loop assigning each iteration of the loop to the abstract 

processor that has the elements of the array a passed as the argument in the iteration.  

 

Note that the HPF compiler parallelizes the loop assuming that data transfers are not needed 

in local model procedures. Therefore, when data transfers are needed for global variables or 

dummy arguments in the local model procedures, the behavior of the program is not 

guaranteed. 

 

EXTRINSIC ( <lang> , <model> ) 

or 

EXTRINSIC ( <extrinsic-kind-keyword> )  

 <lang> is ”HPF” or “Fortran” 

 <model> is ”GLOBAL”, “LOCAL”, or ”SERIAL”. ”GLOBAL”, “LOCAL”, 

and ”SERIAL” indicate global model, local model, and serial model, respectively.  

 <extrinsic-kind-keyward> is HPF, HPF_LOCAL, HPF_SERIAL, Fortran_LOCAL, or  

Fortran_SERIAL, which indicate global model HPF, local model HPF, serial model 

HPF, local model Fortran, and serial model Fortran, respectively. 
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Figure 64  Fortran_LOCAL Procedure Invoked in the INDEPENDENT Loop 

 

4.2.5 ON-HOME-LOCAL Directive Construct and Directive 

When the HPF compiler parallelizes a loop nest, it selects one mapped array as the base array 

for the parallelization and assigns iterations of the loops so each abstract processor accesses 

only the base array elements mapped on itself. The base array is called a home array. When 

the home array selected by the HPF compiler is not appropriate, unnecessary data transfers 

can occur. In the example Figure 65, since the do variable i corresponds to the non-mapped 

axis of the array a, all abstract processors execute the whole loop redundantly. On the other 

hand, the subscript along the mapped axis of the array a is always one. Since the array 

      integer a(100,100) 

!HPF$ DISTRIBUTE A(*,BLOCK) 

      interface 

        EXTRINSIC(Fortran_LOCAL) subroutine sub(a) 

        integer a(100) 

        intent(out) :: a 

        end subroutine 

      end interface 

         : 

!HPF$ INDEPENDENT 

      do i=1,100 

        call sub(a(:,i)) 

      enddo 

          : 

      end 

      EXTRINSIC(Fortran_LOCAL) subroutine sub(a) 

      integer a(100) 

      intent(out) :: a 

      do i=1,100 

        a(i) = i 

      enddo 

      end 
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elements accessed in the loop are mapped only on the first abstract processor, data transfers 

are needed.  

Figure 65  Boundary Processing Loop 

 

In such cases, it is possible to improve the execution performance by inserting the ON-HOME-

LOCAL directive construct as shown in Figure 66, which specifies that no data transfers are 

needed when the whole loop is executed only by the abstract processor onto which the array 

section a(:,1) is mapped. 

Figure 66  ON-HOME-LOCAL Directive Construct That Encloses the Whole Loop 

 

The example Figure 67 shows the loop nest that performs a matrix-vector product for a 

sparse matrix a in the Compressed Row Storage (CRS) format. The arrays are distributed as 

shown in Figure 68 so that no data transfers are needed when four abstract processors 

execute the loop nest. However, it is currently difficult for the HPF compiler to judge that no 

data transfers are needed when arrays distributed with the BLOCK distribution and those with 

the GEN_BLOCK distribution are accessed in the same loop nest. 

      real a(100,100) 

!HPF$ DISTRIBUTE a(*,BLOCK) 

         : 

      do i=1,99 

        a(i,1) = a(i,1) + a(i+1,1) 

      enddo 

      real a(100,100) 

!HPF$ DISTRIBUTE a(*,BLOCK) 

          : 

!HPF$ ON HOME(a(:,1)), LOCAL BEGIN 

      do i=1,99 

        a(i,1) = a(i,1) + a(i+1,1) 

      enddo 

!HPF$ END ON 
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Figure 67  Matrix-Vector Product in CRS Format 

 

 

Figure 68  Mapping of Arrays in CRS Format 

 

Then it is possible to parallelize the loop nest efficiently by specifying that data transfers for 

the arrays a and cidx are not needed when each iteration of the loop do i is assigned to the 

abstract processor that has the home array r(i) as shown in Figure 69. 

      real a(5), v(4), r(4) 

      integer rst(5), cidx(5) 

      integer, parameter :: m(4) = (/1,1,2,1/) 

!HPF$ PROCESSORS p(4) 

!HPF$ DISTRIBUTE r(BLOCK) ONTO p 

!HPF$ DISTRIBUTE (GEN_BLOCK(m)) ONTO p :: a, cidx 

          : 

      do i=1,4 

        r(i) = 0.0 

        do j = rst(i), rst(i+1)-1 

          r(i) = r(i) + a(j) * v(cidx(j)) 

        enddo 

      enddo 
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Figure 69  ON-HOME-LOCAL Directive Construct to a Matrix-Vector Product 

 

When the target of the ON-HOME-LOCAL directive construct is one executable statement or 

construct, the ON-HOME-LOCAL directive, in which keywords BEGIN and END ON are omitted, 

can also be used. The syntax of the ON-HOME-LOCAL directive construct and ON-HOME-

LOCAL directive is as follows: 

 

 

 

 

 

 

 

 

      real a(5), v(4), r(4) 

      integer rst(5), cidx(5) 

      integer, parameter :: m(4) = (/1,1,2,1/) 

!HPF$ PROCESSORS p(4) 

!HPF$ DISTRIBUTE r(BLOCK) ONTO p 

!HPF$ DISTRIBUTE (GEN_BLOCK(m)) ONTO p :: a, cidx 

          : 

      do i=1,4 

!HPF$  ON HOME(r(i)), LOCAL(a, cidx) BEGIN 

        r(i) = 0.0 

        do j = rst(i), rst(i+1)-1 

          r(i) = r(i) + a(j) * v(cidx(j)) 

        enddo 

!HPF$  END ON 

      enddo 
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Figure 70  ON-HOME-LOCAL Directive Construct and Directive  

 

4.2.6 SHADOW Directive and REFLECT Directive 

When the do i loop in Figure 71 is parallelized selecting the left hand side b(i) as the home 

array, the data transfer between adjacent abstract processors is necessary because the 

computation references the array elements mapped on the adjacent abstract processors as 

shown in Figure 72. 

 

Figure 71  Loop with References to Adjacent Elements 

 

      real a(12), b(12) 

!HPF$ PROCESSORS p(4) 

!HPF$ DISTRIBUTE (*,BLOCK) ONTO p :: a, b 

         : 

      do i=2,11 

        b(i) = a(i-1) + a(i) + a(i+1) 

      enddo 

ON-HOME-LOCAL directive construct 

!HPF$ ON HOME( <array section> ) [, LOCAL[( v,… )] ] BEGIN 

        Sequence of <executable statement or construct> 

!HPF$ END ON 

 The abstract processors onto which <array section> is mapped execute the 

sequence of <executable statement or construct>. 

 v indicates the name of a variable for which data transfers are not needed. When 

( v,… ) is omitted, data transfers are not needed for all variables that appear in the 

sequence of <executable statement or construct>. 

 

ON-HOME-LOCAL directive 

!HPF$ ON HOME( <array section> ) [, LOCAL[( v,… )] ] 

 The abstract processors onto which <array section> is mapped execute the 

immediately following executable statement or construct. 
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Figure 72  References between Adjacent Abstract Processors 

 

The data transfer can be performed efficiently by allocating buffer areas to store the data 

received from adjacent abstract processors in advance as shown in Figure 73. The loop itself 

can also be executed efficiently without data transfers during the execution by referencing 

the values of the buffer areas as shown in Figure 74. The buffer areas are called the shadow 

area, and the data transfers between adjacent abstract processors are called the shift transfer. 

 

 

Figure 73  Shift Transfer 

 

 

Figure 74  Parallel Execution Referencing the Shadow Area 

 

The HPF compiler allocates the shadow area with width four along the axes distributed with 

the BLOCK distribution or GEN_BLOCK distribution by default and generates the shift transfer 

automatically. 

 

However, it is not possible to generate the shift transfer in the example Figure 75, because it 

is unknown at compilation time whether the shadow area includes the adjacent reference of 

width n. 
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Figure 75  Width of Adjacent References are Determined at Runtime 

 

If a programmer knows that the value of the variable n is -1 or 1, the HPF directives as shown 

in the example Figure 76 make it possible to parallelize the loop only with the efficient shift 

transfer. 

 

1. Declare the shadow area explicitly with the SHADOW directive. 

2. Perform the shift transfer before the loop with the REFLECT directive. 

3. Specify with the ON-HOME-LOCAL directive that the loop can be executed without data 

transfers by selecting the array reference b(i) as the home array. 

 

 

      subroutine sub(a,b,n) 

real a(100), b(100) 

!HPF$ PROCESSORS p(4) 

!HPF$ DISTRIBUTE (BLOCK) ONTO p :: a, b 

         : 

      do i=2,99 

        b(i) = a(i) + a(i+n) 

      enddo 
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Figure 76  SHADOW Directive, REFLECT Directive, and ON-HOME-LOCAL Directive 

 

The syntax of the SHADOW directive is shown in Figure 77. Note that when a dummy 

argument appears in the SHADOW directive, the same SHADOW directive should be specified 

to the corresponding actual argument. This is because when the shadow widths of a dummy 

argument and the corresponding actual argument are different, copy between them occurs 

to make the shadow widths match up. 

Figure 77  Syntax of the SHADOW Directive 

 

 

      subroutine sub(a,b,n) 

real a(100), b(100) 

!HPF$ PROCESSORS p(4) 

!HPF$ DISTRIBUTE (BLOCK) ONTO p :: a, b 

!HPF$ SHADOW (1) :: a 

         : 

!HPF$ REFLECT a 

 

      do i=2,99 

!HPF$  ON HOME(b(i)), LOCAL 

        b(i) = a(i) + a(i+n) 

      enddo 

!HPF$ SHADOW a( <shadow width>,… ) 

         or  

!HPF$ SHADOW ( <shadow width>,… ) :: a,… 

 a indicates the name of an array 

 <shadow width> is n or l : u, where n is equivalent to n : n, which indicates the 

lower shadow width and upper shadow width, respectively. The shadow width must 

be a constant. 
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The syntax of the REFLECT directive is as follows: 

 

Figure 78  Syntax of the REFLECT Directive 

 

4.3 Extended Intrinsic Procedures 

This section describes extended intrinsic procedures supported by the HPF compiler. 

 

4.3.1 Timing Procedures 

 HPF_LOCAL_WCLOCK(ATIME) 

 Description. 

Each abstract processor returns the value of the wall-clock time on itself without 

synchronization. The values on different abstract processors are generally different. 

It can be used to know the load balance for a specific computation segment. 

 Class. 

subroutine. 

 Argument. 

ATIME 

must be an array of type double precision. It is an INTENT(OUT) argument. It 

must appear in the DISTRIBUTE directive that specifies the BLOCK distribution 

along all axes. The shape of it must be the same as that of the processor array 

onto which it is distributed. 

Each element of the array ATIME is assigned the current time on the 

corresponding abstract processor in seconds. The values are non-negative. 

 

!HPF$ REFLECT [ (<shadow width>,…) ] [ :: ] a,… 

 a indicates the name of an array, which must appear in the SHADOW directive in 

the specification part of the scoping unit. 

 When <shadow width>,… is specified, the shift transfer is performed only on the 

specified part of the shadow area, which is called the partial REFLECT directive. 
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 Example. 

 

 

 

 

 

 

 

 

 

The values of t2(1) – t1(1) and t2(2) - t1(2) are the elapsed times required for 

executing the loop on the abstract processors p(1) and p(2), respectively. 

 

 HPF_WCLOCK(TIME) 

 Description 

It returns the wall-clock time. A representative abstract processor measures the wall-

clock time after synchronization among all abstract processors and broadcasts the 

value to all abstract processors. The value is the same on all abstract processors, but 

the overhead for the synchronization and broadcast is involved. Therefore, it is 

suitable for measurement of relatively large computation segments. 

 Class. 

subroutine. 

 Argument 

TIME 

must be a scalar variable of type double precision. It is an INTENT(OUT) argument. 

The current wall-clock time is set in seconds. The value is non-negative.  

 

 

 

double precision t1(2), t2(2) 

integer a(100) 

!HPF$ PROCESSORS p(2) 

!HPF$ DISTRIBUTE (BLOCK) ONTO p :: t1, t2 

          : 

      call HPF_LOCAL_WCLOCK(t1) 

      do i=1,100 

        a(i) = i 

      enddo 

      call HPF_LOCAL_WCLOCK(t2) 
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 Example 

 

 

 

 

 

 

The value t2 – t1 indicates the elapsed time in seconds required for executing the 

subroutine sub. 

 

4.4 Clean up of Fortran Code 

Fortran 95 programs can basically be compiled with the HPF compiler as they are as HPF is 

an extension of Fortran 95. However, when the following old Fortran features are used, code 

modifications are required.  

 

 Multiple Variables share the same memory via EQUIVALENCE statements and COMMON 

statements (storage association). 

 Order of array elements is assumed (sequence association). For example, the order of  

the elements of an array a with the shape (2,3) is a(1,1), a(2,1), a(1,2), a(2,2), a(1,3), 

and a(2,3). 

 

These characteristics cannot be kept in HPF since arrays are divided and parts of them are 

mapped onto the distributed-memory separately. Mapped arrays are subject to the following 

constraints.  

 Mapped arrays cannot appear in the EQUIVALENCE statement. 

 Every COMMON block variable must have the same attributes such as the shape, type, 

and data mapping in all occurrences in a program in principle. 

 The shapes of each actual argument and corresponding dummy argument must be the 

same in principle.  

double precision t1, t2 

integer a(100) 

          : 

      call HPF_WCLOCK(t1) 

      call sub() 

      call HPF_WCLOCK(t2) 
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 When an actual argument is an array element (for example, a(1,2)), the corresponding 

dummy argument must not be an array (address passing. refer to Figure 79): That is, 

when an actual argument is an array element, the corresponding dummy argument must 

be a scalar variable.  

 Assumed-size arrays, whose upper bound along the last axis is * like a(n,*), cannot be 

mapped. 

 

Figure 79  Address Passing (Not Allowed in HPF) 

 

Before parallelizing existing Fortran programs, modify these descriptions as follows, and then 

insert HPF directives.  

 

 Delete EQUIVLAENCE statements to mapped arrays. When only part of a large array is 

used, declare the array with the shape and type actually used using the features to 

determine shapes of arrays at runtime such as allocatable arrays or automatic arrays. 

 Declare every common block variable so that it has the same attributes including data 

mapping in all occurrences in a program. It is helpful to declare each common block in 

an include file or module to prevent omission or error in the declaration. 

 Declare actual arguments and corresponding dummy arguments so that they have the 

same shapes. The following modification can be required. 

 Each address passing as shown in Figure 79 must be modified into an array section 

actual argument as shown in Figure 80 to explicitly specify that an array is passed as 

an actual argument. 

real a(n,n) 

do i=1,n 

call sub(a(1,i),n) 

      enddo 

end 

 

subroutine sub(a,n) 

real a(n) 
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 Assumed-size arrays as shown in Figure 81 must be modified into explicit shape 

arrays as shown in Figure 82 or assumed-shape arrays. 

Figure 80  Array Section Actual Argument 

 

Figure 81  Assumed-Size Array 

 

Figure 82  Explicit Shape Array 

 

It can sometimes be difficult or very troublesome to parallelize existing Fortran programs 

with HPF due to constrains described above. However, procedures that are not needed to 

real a(n,n) 

do i=1,n 

call sub(a(:,i),n) 

      enddo 

end 

 

subroutine sub(a,n) 

real a(n) 

real a(n,n) 

call sub(a,n) 

end 

 

subroutine sub(a,n) 

real a(n,*) 

real a(n,n) 

call sub(a,n) 

end 

 

subroutine sub(a,n) 

real a(n,n) 
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parallelize can be compiled with the HPF compiler without modifications using any of the 

following methods. 

 Procedures that do not have mapped arrays and I/O can be compiled with the HPF 

compiler as they are.  

 The EXTRINSIC procedure feature enables compilation of procedures as Fortran. Describe 

explicit interfaces such as interface blocks to declare the EXTRINSIC prefix to specify that 

Fortran procedures are referenced. Refer to subsection 4.2.4 for the EXTRINSIC feature. 

 Create object files or archive files with the Fortran compiler and link HPF programs with 

them with the HPF compiler. This method is also available to call existing Fortran libraries 

from HPF programs. 
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Chapter5 Tuning and Debug 

This chapter explains how to tune and debug HPF programs. 

5.1 Tuning 

5.1.1 Parallelization Information List 

Parallelization information lists, which display parallelization and data transfer information by 

the HPF compiler, are generated with the HPF compiler option -Mlist2. The suffix of the 

parallelization information lists is .lst. 

Figure 84 shows an example of the parallelization information list for the HPF program in 

Figure 83. The meanings of the marks in the parallelization information list is shown in Table 

6. 

Figure 83  Example of an HPF Program 

 

 

       real :: a(100,100) = 0 

!HPF$ DISTRIBUTE a(*,block) 

 

do i=1,99 

  do j=1,100 

    a(j,i) = a(j,i) + a(j,i-1) 

  enddo 

enddo 

 

do j = 1,100 

   do i = 1,100 

      x = max(x,a(i,j)) 

   end do 

end do 

 

write(*,*)x 
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Figure 84  Example of the Parallelization Information List 

 

Table 6  Marks in the Parallelization Information List 

Mark Description 

(   1) Line number in the HPF source file 

COMM: SFT [a] [LINO: 5 in src.hpf] Data transfer is generated by the HPF compiler. The 

format is as follows: 

  

COMM: Kind [Variable name] [LINO: Line number] 

 

(    1)                        real :: a(100,100) = 0 

(    2)                  !HPF$ DISTRIBUTE a(*,block) 

(    3) 

(    4) <S>-------------       do i=1,99 

        COMM: SFT [a] [LINO: 5 in src.hpf] 

(    5) <N>-------------         do j=1,100 

(    6)  |                         a(j,i) = a(j,i) + a(j,i-1) 

(    7)  +--------------         enddo 

(    8)                    enddo 

(    9) 

        COMM: RED [x] [LINO: 10 in src.hpf] 

        HOME: a(:,j) 

(   10) <P>-------------       do j = 1,100 

(   11)  |<I>-----------          do i = 1,100 

(   12)  |                           x = max(x,a(i,j)) 

(   13)  |                    end do 

(   14)  +--------------       end do 

(   15) 

(   16)                    write(*,*)x 

(   17)                    end 
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, where Kind is one of the following:  

RED : Reduction  

SFT : Shift  

CPY : Copy of an array 

G/S : Gather/Scatter  

SCL : Data transfer for a scalar variable  

 

It is possible to obtain the list of data transfers by 

extracting the lines that contain the mark “COMM:” 

as follows, and check whether redundant data 

transfers are generated.  

%>grep "COMM:" src.lst 

 

Of the data transfers above, the marks RED and 

SFT are usually not problems, but elimination of the 

mark CPY can improve execution performance if 

possible. The marks G/S and SCL indicate very 

high-overhead data transfers in many cases, and 

should be eliminated by tuning the HPF program. 

<S> Loop is judged as non-parallelizable. It is possible to 

obtain the list of loops that are judged as non-

parallelizable by extracting lines that contain the 

mark <S> as follows:  

%>grep "<S>" src.lst 

 

When a parallelizable loop is judged as non-

parallelizable, inserting an INDEPENDENT directive 

can lead to the parallelization of the loop. 

<N> Loop is judged as parallelizable, but not parallelized. 

When no data transfer is generated for the loop, it 
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is not a problem. Changing data mappings of arrays 

that appear in the loop can lead to the parallelization 

of the loop.  

It is possible to obtain the list of loops that are 

judges as parallelizable, but not parallelized by 

extracting the lines that contain the mark <N> as 

follows:  

%>grep "<N>" src.lst 

<P> Loop is parallelized by the HPF compiler. 

<I> Loop is judged as parallelizable. When the loop has 

reduction computation, the mark <R> is displayed 

instead of the mark <I>. 

HOME: a(:,j) Home array (base array for parallelization) for the 

immediately following loop nest. 

 

 

Detailed Parallelization information lists, which display intermediate code by the HPF compiler 

in addition to parallelization and data transfer information, are generated with the HPF 

compiler option –Mlist3.  

Figure 85 shows an example of the detailed parallelization information list for the HPF 

program in Figure 83. 
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Figure 85  Example of the Detailed Parallelization Information List 

 

Please note that parallelization information marks are not displayed for array assignment 

statements. 

 

(    9) 

        COMM: RED [x] [LINO: 10 in src.hpf] 

        HOME: a(:,j) 

(   10) <P>-------------       do j = 1,100 

(   11)  |<I>-----------         do i = 1,100 

(   12)  |                           x = max(x,a(i,j)) 

(   13)  |                       end do 

(   14)  +--------------       end do 

      . 

      .      x$ind = x 

      .      j$indl = a$sd(84) 

      .      j$indu = a$sd(85) 

      .      pghpf_saved_local_mode = pghpf_local_mode 

      .      pghpf_local_mode = 1 

      .!NEC$nosync 

      .!NEC$shortloop 

      .      do j = j$indl, j$indu 

      .!NEC$nosync 

      .         do i = 1, 100 

      .            x$ind = max(x$ind,a(i,j)) 

      .         enddo 

      .      enddo 

      .      pghpf_local_mode = pghpf_saved_local_mode 

      .      call pghpf_global_maxval(x$ind,a,125_8,pghpf_type(27),a$sd, 

      .     +pghpf_type(26)) 

      .!     call .reduce_maxval(x$ind,a,125_8) 

      .      x = x$ind 

      . 
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Loop optimization information by the NEC Fortran compiler is also displayed at the right of 

parallelization information by the HPF compiler as shown Figure 86 by specifying the NEC 

Fortran compiler option –report-format or –report-all and HPF compiler option -Mlist2 or -

Mlist3 at the same time, if the HPF compiler option –Mftn is not specified. 

 

Figure 86  Parallelization Information List with Loop Optimization Information 

 

The meanings of the loop optimization information marks are the same as those in the NEC 

Fortran compiler format list. For example, the mark P indicates a shared-memory parallelized 

loop and the mark V a vectorized loop. Moreover, the marks including I (Inline expansion) 

and S (partial vectorization) are displayed at the left of the first column of source code lines. 

Refer to “Fortran Compiler User’s Guide” for details. 

When a loop is divided into multiple loops by the HPF compiler, and the loops are optimized 

in various ways by the NEC Fortran compiler, the mark M is displayed. 

 

5.1.2 Diagnostic Messages 

Diagnostic messages are displayed with the HPF compiler option –Minfo. The diagnostic 

messages you should pay attention to are as follows: 

(    1)                        real :: a(100,100) = 0 

(    2)                  !hpf$ distribute a(*,block) 

(    3) 

(    4) <S>+------------       do i=1,99 

        COMM: SFT [a] [LINO: 5 in src.hpf] 

(    5) <N>V------------         do j=1,100 

(    6)  |                         a(j,i) = a(j,i) + a(j,i-1) 

(    7)  +--------------         enddo 

(    8)                        enddo 

(    9) 

        COMM: RED [x] [LINO: 10 in src.hpf] 

        HOME: a(:,j) 

(   10) <P>P------------       do j = 1,100 

(   11)  |<I>V----------          do i = 1,100 

(   12)  |                           x = max(x,a(i,j)) 

(   13)  |                        end do 

(   14)  +--------------       end do 

(   15) 

(   16)                        write(*,*)x 

(   17)                        end 
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 expensive communication 

High-Overhead data transfer is generated 

 

 Array “array name” not aligned with home array; array copied 

The array “array name” is copied into a temporary area, which usually involves data 

transfer, because the data mapping of it does not match that of the base array of loop 

parallelization (home array).  

 

 communication is generated: array copy 

An array is copied into a temporary area, which usually involves data transfer. 

 

5.1.3 Examples of Tuning of HPF Programs 

This subsection describes typical tuning examples of HPF programs. 

 

 Parallelization of a Loop Nest that Contains a Work Array 

The loop nest in Figure 87 is not automatically parallelized because the work array tmp 

is defined in multiple iterations of the loop do k. 

Figure 87  Loop Nest that Contains a Work Array 

      integer tmp(100),a(100,100) 

!HPF$ DISTRIBUTE a(*,BLOCK) 

         : 

      do k = 2, nz - 1 

        do j = 2, ny - 1 

          do i = 1, 100 

            tmp(i) = i 

          enddo 

          a(j,k) = tmp(i) + tmp(i+1) 

        enddo 

      enddo 

      write(*,*)a 

      end 
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Inserting the INDEPENDENT directive with the NEW clause for the work array tmp as 

shown in Figure 88 enables parallelization of the loop do k. 

 

Figure 88  INDEPENDENT Directive with a NEW Clause for a Work Array 

 

 Loop Fission 

In the loop nest in Figure 89, data transfer is needed for the array a or b, because the 

subscripts along the distributed axis of the left hand side of the assignment statements 

are different. Data transfer for a defined array involves higher overhead than that for a 

referenced array because allocation of a temporary area, copy of the value of the 

corresponding array to that of the temporary, and copy back from the temporary to the 

corresponding array are required. 

      integer tmp(100),a(100,100) 

!HPF$ DISTRIBUTE a(*,BLOCK) 

         : 

!HPF$ INDEPENDENT, NEW(tmp,i,j) 

      do k = 2, nz - 1 

        do j = 2, ny - 1 

          do i = 1, 100 

            tmp(i) = i 

          enddo 

          a(j,k) = tmp(i) + tmp(i+1) 

        enddo 

      enddo 

      write(*,*)a 

      end 
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Figure 89  Subscripts along the Distributed Axis are Different. 

 

Then, the loop fission as shown in Figure 90 to use only one subscript along the distributed 

axis of the left hand side enables efficient parallelization only with the shift transfer for the 

right hand side array c for the first loop nest. 

Figure 90  Loop Fission 

 

 Inhibition of Data Transfers for Boundary Processing Loops 

Without HPF directives, inefficient data transfers are generated for boundary processing 

      real a(10,10), b(10,10), c(10,10) 

!HPF$ DISTRIBUTE (*,BLOCK) :: a, b, c 

         : 

      do j=1,9 

        do i=1,99 

          a(i+1,j) = -c(i+1,j+1) 

          b(i,j+1) = c(i+1,j+1) 

        enddo 

enddo 

      real a(10,10), b(10,10), c(10,10) 

!HPF$ DISTRIBUTE (*,BLOCK) :: a, b, c 

         : 

      do j=1,9 

        do i=1,9 

          a(i+1,j) = -c(i+1,j+1) 

        enddo 

      enddo 

      do j=1,9 

        do i=1,9 

          b(i,j+1) = c(i+1,j+1) 

        enddo 

enddo 
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loops as shown in Figure 91 that access only the elements at the end of a distributed 

axis of arrays, because all abstract processors take part in the execution.  

Figure 91  Boundary Processing Loop 

 

The data transfers can be inhibited by inserting the ON-HOME-LOCAL directives as 

shown in Figure 92 to specify that only the abstract processers onto which the elements 

at the end of the distributed axis of arrays are mapped execute the statements 

 

Figure 92  ON-HOME-LOCAL Directive to Boundary Processing 

 

 Loop Peeling for boundary Processing 

The boundary processing under the IF construct in the loop nest as shown in Figure 93 

can inhibit parallelization of the loop nest or lead to inefficient data transfers.  

      double precision a(100,100) 

!HPF$ PROCESSORS p(2) 

!HPF$ DISTRIBUTE a(*,BLOCK) ONTO p 

 

      do i=1,100 

        a(i,1) = a(i,2) 

        a(i,100) = a(i,99) 

      enddo 

      double precision a(100,100) 

!HPF$ PROCESSORS p(2) 

!HPF$ DISTRIBUTE a(*,BLOCK) ONTO p 

 

      do i=1,100 

!HPF$  ON HOME(a(:,1)), LOCAL 

        a(i,1) = a(i,2) 

!HPF$  ON HOME(a(:,100)), LOCAL 

        a(i,100) = a(i,99) 

      enddo 
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Figure 93  Loop that Contains Boundary Processing 

 

Efficient parallel execution is possible by splitting the boundary processing as a distinct 

loop and inserting the ON-HOME-LOCAL directive construct to it as shown in Figure 94. 

 

     parameter(n=100) 

      real a(n,n),b(n,n) 

!HPF$ DISTRIBUTE (*,BLOCK) :: a,b 

 

      do j=1,n 

        if(j.eq.n)then 

          do i=1,n 

            a(i,j) = 0.9 

          enddo 

        else 

          do i=1,n 

            a(i,j) = b(i,j) + b(i,j+1) 

          enddo 

        endif 

      enddo 



Chapter5 Tuning and Debug 

- 100 - 

Figure 94  Loop Peeling of Boundary Processing 

 

 

 Subscripts in Boundary Processing 

When the subscript in the distributed axis of arrays is constant as shown in Figure 95, 

inefficient data transfers can occur because the subscript does not correspond to the DO 

variable.  

     parameter(n=100) 

     real a(n,n),b(n,n) 

!HPF$ DISTRIBUTE (*,BLOCK) :: a,b 

 

      do j=1,n-1 

        do i=1,n 

          a(i,j) = b(i,j) + b(i,j+1) 

        enddo 

      enddo 

 

      j=n 

!HPF$ ON HOME(a(:,j)), NEW(i), LOCAL(a) BEGIN 

      do i=1,n  ! Boundary processing loop 

        a(i,j) = 0.9 

      enddo 

!HPF$ END ON 
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Figure 95  Constant Subscript in the Distributed Axis 

 

Rewrite the subscript along the distributed axis using a linear expression of the DO 

variable as shown in Figure 96. 

 

Figure 96  Subscript Using a Linear Expression of the DO Variable 

 

 Actual Arguments with Different Data Mappings 

When a procedure is invoked with actual arguments with different data mappings as 

shown in Figure 97, data transfers occur in some invocations of the procedure, which can 

lead to poor performance.  

      parameter(n=100) 

      real a(n,n),b(n,n) 

!HPF$ DISTRIBUTE (*,BLOCK) :: a,c 

 

      do j=1,n 

        if(j.eq.2)then 

          do i=1,n 

            a(i,1) = a(i,1) - b(i)*c(i,1) 

          enddo 

        endif 

      enddo 

!HPF$ DISTRIBUTE (*,BLOCK) :: a,c 

      do j=1,n 

        if(j.eq.2)then 

          do i=1,n 

            a(i,j-1) = a(i,j-1) - b(i)*c(i,j-1) 

          enddo 

        endif 

      enddo 
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Figure 97  Actual Arguments with Different Data Mappings 

 

In such cases, it is possible to improve the performance by making copies of the 

procedure so that the dummy arguments of each procedure have the same data 

mappings as the corresponding actual arguments has as shown in Figure 98. This kind 

of optimization is called procedure cloning. 

 

Figure 98  Copies of a Procedure Corresponding to Data Mappings of the Argument 

 

 

      double precision a(100,100),b(100,100) 

!HPF$DISTRIBUTE a(*,BLOCK) 

      call sub(a) 

      call sub(b) 

      end 

      double precision a(100,100),b(100,100) 

!HPF$DISTRIBUTE a(*,BLOCK) 

      call sub1(a) 

      call sub2(b) 

      end 

 

      subroutine sub1(a) 

      double precision a(100,100) 

!HPF$DISTRIBUTE a(*,BLOCK) 

        : 

      end 

 

      subroutine sub2(b) 

      double precision b(100,100) 

        : 

      end 
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 Data Mapping of Dummy Arguments 

In the example Figure 99, the data transfer to match the data mapping of the actual 

argument with that of the corresponding dummy argument occurs when the subroutine 

sub is invoked. 

Figure 99  Data Mappings of the Actual Argument and Dummy Argument Differ 

 

It is possible to check whether data transfers at invocations of procedures occur by 

executing with the HPF runtime option -hpf –commmsg, as the warning message like the 

following is output for data transfers across procedure boundaries. 

  

"a": Communication occurs at procedure boundary PROG=sub ELN=7 Called from main 

ELN=4 

 

Execution performance is improved by matching the data mappings of dummy arguments 

with those of the corresponding actual arguments as shown in Figure 100.  

      program main 

      real a(100,100) 

!HPF$ DISTRIBUTE a(*,BLOCK) 

      call sub(a) 

      end 

 

      subroutine sub(a) 

      real a(100,100) ! Not Mapped 
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Figure 100  Explicit Data Mapping of the Dummy Argument 

 

 I/O 

Element by element I/O as shown in Figure 101 is not efficient. 

Figure 101  Element by Element I/O 

 

Read or write whole arrays using unformatted I/O as shown in Figure 102 especially 

when sizes of arrays read or written are large. 

 

Figure 102  I/O of Whole Arrays 

 

 

 Nesting Order of Loops that perform reduction computation 

The do k loop in Figure 103 performs reduction computation on the array a. 

      program main 

      real a(100,100) 

!HPF$ DISTRIBUTE a(*,BLOCK) 

      call sub(a) 

      end 

 

      subroutine sub(a) 

      real a(100,100)  

!HPF$ DISTRIBUTE a(*,BLOCK) 

write(13,*) (a(i), b(i), i=1, n) 

write(13,*) a, b 
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Figure 103  Loop Nest that Performs Reduction Computation 

 

When you use the shared-memory parallelization by the NEC Fortran compiler with the 

compiler option –mparallel in addition to the distributed-memory parallelization by the 

HPF compiler, the outermost loop should be the perfectly parallel loop without reduction 

dependencies as shown in Figure 104 for efficient shared-memory parallelization. In this 

case, the HPF compiler distributed-memory-parallelizes the do k loop that corresponds 

to the distributed axis of the array w, and the NEC Fortran compiler shared-memory- 

parallelizes the outermost do j loop. 

 

Figure 104  The Outermost Loop Should be Perfectly Parallelizable 

 

      double precision w(100,100,100),a(100,100) 

!HPF$ DISTRIBUTE w(*,*,block) 

 

      do k=1,100 

        do j=1,100 

          do i=1,100 

            a(i,j) = a(i,j) + w(i,j,k) 

          enddo 

        enddo 

      enddo 

      double precision w(100,100,100),a(100,100) 

!hpf$ DISTRIBUTE w(*,*,BLOCK) 

 

      do j=1,100 

        do k=1,100 

          do i=1,100 

            a(i,j) = a(i,j) + w(i,j,k) 

          enddo 

        enddo 

      enddo 
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5.2 An Easy and Simple Way of Developing HPF Programs 

The HPF compiler option –Mautodist makes it possible to compile serial Fortran programs as 

HPF programs in which all arrays are distributed along the last axis with the BLOCK 

distribution. Also, the suboptions =all[:b] and =rank?[:b] enable more detailed specification 

of data mappings of arrays. The HPF compiler option –Mlist2 generates the parallelization 

information lists for the HPF programs in which the data mappings are specified and you can 

check whether each loop is parallelized and where and what data transfers are generated. 

This section explains how to parallelize the Fortran program “sample.F” shown in Figure 105, 

Figure 106, and Figure 107 with HPF using these HPF compiler options.  

 

Figure 105 Sample Program: Module 

    module param       

    parameter(n=1023,maxiter=10)      

end module 
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Figure 106  Sample Program: Main Program 

      program sample 
      use param 
      double precision a(n,n),b(n,n),c(n,n),sum,ap       

integer idxx(n),idxy(n),ix,iy,i,j,iter       
data ap/0.0d0/       
 
do i=1,n 

        idxx(i) = n - i + 1 
        idxy(i) = n - i + 1 
      enddo 
      do j=2,n-1 
        do i=1,n 
          b(i,j) = 1.0d0 
          c(i,j) = 1.0d0 
        enddo 
      enddo 
      call bound(b) 
      call bound(c) 
 
      do iter=1,maxiter 
! main loop 
        do j=2,n-1 
          do i=2,n-1 
            ix = idxx(i) 
            iy = idxy(j) 
            a(i,j)=(b(i,j)+b(i-1,j)+b(i+1,j)                              & 
     &   +b(i,j-1)+b(i,j+1))*0.2d0*c(ix,iy)+ap 
          enddo 
        enddo 
        do i=1,n 
          a(1,i) = a(2,i) 
          a(n,i) = a(n-1,i) 
        enddo 
        call bound(a) 
        do j=1,n 
          do i=1,n 
            ix = idxx(i) 
            b(ix,j)=a(i,j)*c(i,j) 
            ap = ap + a(i,j) 
          enddo 
        enddo 
      enddo 
 
      write(*,*)ap 
      end 
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Figure 107  Sample Program: Subroutine Bound 

 

 

First of all, compile the program with the HPF compiler options -Mautodist and –Mlist. Then 

the parallelization information list “sample.lst” is generated for the HPF program in which all 

the arrays are distributed along the last axis with the BLOCK distribution. 

Figure 108 shows the parallelization information list for the main program. Focusing on the 

mark “COMM:”, which indicates data transfer is generated, you can find that a lot of data 

transfers are generated for lines 26 and 40 and the program is inefficiently parallelized. You 

must not execute the program as it is because execution performance of an inefficient 

distributed-memory parallel program can be hundreds or thousands times slower than the 

original serial program. The following describes how to improve the program. 

 

 

 

 

 

 

 

 

 

 

 

 

      subroutine bound(dummy) 

      use param 

      double precision dummy(n,n) 

      do i=1,n 

        dummy(i,1) = dummy(i,2) 

        dummy(i,n) = dummy(i,n-1) 

      enddo 

      end 
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Figure 108  Parallelization Information List: Main Program 

 

(   11) <I>-------------       do i=1,n 
(   12)                          idxx(i) = n - i + 1 
(   13)                          idxy(i) = n - i + 1 
(   14)                        enddo 
(   15) <I>-------------       do j=2,n-1 
(   16) <I>-------------         do i=1,n 
(   17)                            b(i,j) = 1.0d0 
(   18)                            c(i,j) = 1.0d0 
(   19)                          enddo 
(   20)                        enddo 
(   21)                        call bound(b) 
(   22)                        call bound(c) 
(   23) 
(   24) <S>-------------       do iter=1,maxiter 
(   25)                  ! main loop 
        COMM: SFT [b] [LINO: 26 in sample.F] 
        COMM: CPY [idxx] [LINO: 26 in sample.F] 
        COMM: G/S [c] [LINO: 26 in sample.F] 
        HOME: idxy(j) 
(   26) <P>-------------         do j=2,n-1 
(   27)  |<I>-----------           do i=2,n-1 
(   28)  |                           ix = idxx(i) 
(   29)  |                           iy = idxy(j) 
(   30)  |                           a(i,j)=(b(i,j)+b(i-1,j)+b(i+1,j) 
(   31)  |                    &   +b(i,j-1)+b(i,j+1))*0.2d0*c(ix,iy)+ap 
(   32)  |                         enddo 
(   33)  +--------------         enddo 
        HOME: a(:,i) 
(   34) <P>-------------         do i=1,n 
(   35)  |                         a(1,i) = a(2,i) 
(   36)  |                         a(n,i) = a(n-1,i) 
(   37)  +--------------         enddo 
(   38)                          call bound(a) 
(   39) <S>-------------         do j=1,n 
        COMM: CPY [idxx] [LINO: 40 in sample.F] 
        COMM: CPY [a] [LINO: 40 in sample.F] 
        COMM: SCL [c] [LINO: 40 in sample.F] 
        COMM: SCL [a] [LINO: 40 in sample.F] 
(   40) <S>-------------           do i=1,n 
        COMM: RED [ap] [LINO: 41 in sample.F] 
(   41)                              ix = idxx(i) 
(   42)                              b(ix,j)=a(i,j)*c(i,j) 
(   43)                              ap = ap + a(i,j) 
(   44)                            enddo 
(   45)                          enddo 
(   46)                        enddo 
(   47) 
(   48)                        write(*,*)ap 
(   49)                        end 
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Figure 109 shows the data transfers for line 26, in which the marks “HOME: idxy(j)” and 

“<P>” indicate that the do j loop is parallelized based on the home array idxy(j), which is 

distributed along the last axis. (The do i loop in line 27 is not parallelized though the HPF 

compiler has judged it as parallelizable as the mark “<I>” shows.) 

 

Figure 109  Data Transfers for Line 26 

 

Of the three data transfers, the first one marked with “COMM: SFT [b]” is relatively efficient 

shift transfer, which is usually not a problem. The second one marked with “COMM: CPY 

[idxx]” is generated because the array idxx, which is distributed along the last axis, is 

accessed with the subscript i (idxx(i)), which does not correspond to the parallelized loop do 

j. Insert the DISTRIBUTE directive not to distribute the array idxx as shown in Figure 110 

because the axis which is accessed with the subscript that does not use a DO variable of a 

parallelized do loop should not be distributed. 

 

Figure 110  DISTRIBUTE Directive Not to Distribute the Rank One Array IDXX 

 

 

The third one marked with ”COMM: G/S [c]” is generated because the array c, which is 

distributed along the last axis, is accessed with indirect subscripts ix and iy (c(ix,iy)) in the 

        COMM: SFT [b] [LINO: 26 in sample.F] 

        COMM: CPY [idxx] [LINO: 26 in sample.F] 

        COMM: G/S [c] [LINO: 26 in sample.F] 

        HOME: idxy(j) 

(   26) <P>-------------         do j=2,n-1 

(   27)  |<I>-----------           do i=2,n-1 

(   28)  |                           ix = idxx(i) 

(   29)  |                           iy = idxy(j) 

(   30)  |                           a(i,j)=(b(i,j)+b(i-1,j)+b(i+1,j) 

(   31)  |                    &   +b(i,j-1)+b(i,j+1))*0.2d0*c(ix,iy)+ap 

!HPF$ DISTRIBUTE (*) :: idxx 
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parallelized loop do j. Insert the DISTRIBUTE directive not to distribute the array c as shown 

in Figure 111 because the subscripts of the array c do not use the DO variable of the 

parallelized loop do j.  

 

Figure 111  DISTRIBUTE Directive Not to Distribute the Rank Two Array C 

 

Figure 112 shows the data transfers for line 40, which are generated between the loops do j 

and do i, which are not parallelized as the mark “<S>” shows.  

 

Figure 112  Data Transfers for Line 40 

 

The loop do j, which performs the reduction computation (sum) on the scalar variable ap, is 

actually parallelizable, but the HPF compiler cannot judge it as parallelizable automatically. 

Therefore, insert the INDEPENDENT directive with the REDUCTION clause for the variable ap 

as shown in Figure 113. The NEW clause for the work variable ix and DO variable for the 

inner do loop i should also be specified.  

!HPF$ DISTRIBUTE (*,*) :: c 

(   39) <S>-------------         do j=1,n 

        COMM: CPY [idxx] [LINO: 40 in sample.F] 

        COMM: CPY [a] [LINO: 40 in sample.F] 

        COMM: SCL [c] [LINO: 40 in sample.F] 

        COMM: SCL [a] [LINO: 40 in sample.F] 

(   40) <S>-------------           do i=1,n 

        COMM: RED [ap] [LINO: 41 in sample.F] 

(   41)                              ix = idxx(i) 

(   42)                              b(ix,j)=a(i,j)*c(i,j) 

(   43)                              ap = ap + a(i,j) 
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Figure 113  INDEPENDENT Directive with a REDUCTION Clause 

 

 

At this point, compile the program with the HPF compiler options –Mautodist and –Mlist2 

again. Figure 114 shows the parallelization information list “sample.lst” for the main program. 

You can find that the main loop nests in the program are parallelized as the mark “<P>” 

shows only with efficient shift transfer marked with “COMM: SFT [b]” and reduction transfer 

“COMM: RED [ap]”.  

!HPF$ INDEPENDENT, NEW(ix,i), REDUCTION(ap) 

        do j=1,n 

          do i=1,n 

            ix = idxx(i) 

            b(ix,j)=a(i,j)*c(i,j) 

            ap = ap + a(i,j) 

          enddo 

        enddo 
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Figure 114  Parallelization Information List after Insertion of HPF Directives 

 

 

(   10)                  !HPF$ DISTRIBUTE (*) :: idxx 
(   11)                  !HPF$ DISTRIBUTE (*,*) :: c 
(   12) 
(   13) <I>-------------       do i=1,n 
(   14)                          idxx(i) = n - i + 1 
(   15)                          idxy(i) = n - i + 1 
(   16)                        enddo 
(   17) <I>-------------       do j=2,n-1 
(   18) <I>-------------         do i=1,n 
(   19)                            b(i,j) = 1.0d0 
(   20)                            c(i,j) = 1.0d0 
(   21)                          enddo 
(   22)                        enddo 
(   23)                        call bound(b) 
(   24)                        call bound(c) 
(   25) 
(   26) <S>-------------       do iter=1,maxiter 
(   27)                  ! main loop 
        COMM: SFT [b] [LINO: 28 in sample.F] 
        HOME: idxy(j) 
(   28) <P>-------------         do j=2,n-1 
(   29)  |<I>-----------           do i=2,n-1 
(   30)  |                           ix = idxx(i) 
(   31)  |                           iy = idxy(j) 
(   32)  |                           a(i,j)=(b(i,j)+b(i-1,j)+b(i+1,j) 
(   33)  |                    &   +b(i,j-1)+b(i,j+1))*0.2d0*c(ix,iy)+ap 
(   34)  |                         enddo 
(   35)  +--------------         enddo 
        HOME: a(:,i) 
(   36) <P>-------------         do i=1,n 
(   37)  |                         a(1,i) = a(2,i) 
(   38)  |                         a(n,i) = a(n-1,i) 
(   39)  +--------------         enddo 
(   40)                     call bound(a) 
(   41)            !HPF$ INDEPENDENT, NEW(i,ix), REDUCTION(ap) 
        COMM: RED [ap] [LINO: 42 in sample.F] 
        HOME: b(:,j) 
(   42) <P>-------------         do j=1,n 
(   43)  |<S>-----------           do i=1,n 
(   44)  |                           ix = idxx(i) 
(   45)  |                           b(ix,j)=a(i,j)*c(i,j) 
(   46)  |                           ap = ap + a(i,j) 
(   47)  |                         enddo 
(   48)  +--------------         enddo 
(   49)                        enddo 
(   50) 
(   51)                        write(*,*)ap 
(   52)                        end 
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Then check data transfers at procedure invocations, which are not displayed in the 

parallelization information list. The actual array arguments b, c, and a are passed to the 

procedure bound, which is referenced three times in the main program. The arrays a and b 

are distributed along the last axis with the HPF compiler option –Mautodist, whereas the array 

c is not distributed because of the explicit DISTRIBUTE directive. Therefore, data transfer 

occurs in any of the invocations of the procedure bound. To prevent the data transfers at 

procedure invocations, copy the procedure as shown in Figure 115 (procedure cloning) so 

that the actual arguments and corresponding dummy arguments always have the same data 

mapping.   

 

Figure 115  Copy of a Procedure (Procedure Cloning) 

 

 

Then replace the reference of the procedure bound that has the non-mapped actual argument 

with that of the copied procedure bound_nodist.  

      subroutine bound(dummy) 

      use param 

      double precision dummy(n,n) ! Distribute with the option –Mautodist 

      do i=1,n 

        dummy(i,1) = dummy(i,2) 

        dummy(i,n) = dummy(i,n-1) 

      enddo 

      end 

 

      subroutine bound_nodist(dummy) 

      use param 

      double precision dummy(n,n) 

!HPF$ DISTRIBUTE (*,*) :: dummy   ! Not distribute 

      do i=1,n 

        dummy(i,1) = dummy(i,2) 

        dummy(i,n) = dummy(i,n-1) 

      enddo 

      end 
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                      ↓ 

                       

At this point, compile the program with the HPF compiler options –Mautodist and –Mlist2. 

Figure 116 and Figure 117 show the parallelization information list for the procedure bound 

and bound_nodist, respectively.  

 

Figure 116  Parallelization Information List: Subroutine Bound 

 

 

 

 

 

 

 

 

 

 

 

(   54)                    subroutine bound(dummy) 

(   55)                    use param 

(   56)                    double precision dummy(n,n)         

COMM: SFT [dummy] [LINO: 57 in sample.F]          

COMM: SFT [dummy] [LINO: 57 in sample.F] 

(   57) <N>-------------      do i=1,n 

(   58)  |                     dummy(i,1) = dummy(i,2) 

(   59)  |                     dummy(i,n) = dummy(i,n-1) 

(   60)  +--------------       enddo 

(   61)                    end 

call bound(c) 

call bound_nobound(c) 
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Figure 117  Parallelization Information List: Subroutine Bound_nodist 

 

The parallelization will not be inefficient as it is because data transfers generated for these 

procedures are only efficient shift transfers for line 57 of the subroutine bound. However, 

these data transfers can be eliminated by inserting the ON-HOME-LOCAL directives as shown 

in Figure 118 so that only abstract processors onto which the elements at both ends of the 

array dummy are mapped execute the assignment statements because the loop do i performs 

the boundary processing along the second axis of the array dummy, which is distributed with 

the HPF compiler option -Mautodist.  

 

Figure 118  ON-HOME-LOCAL Directives to Boundary Processing 

 

Finally, the HPF program “sample.hpf.src” is generated by compiling the program with the 

(   62)                    subroutine bound_nodist(dummy) 

(   63)                    use param 

(   64)                    double precision dummy(n,n) 

(   65)                  !HPF$ DISTRIBUTE (*,*) :: dummy 

(   66) <N>-------------       do i=1,n 

(   67)  |                     dummy(i,1) = dummy(i,2) 

(   68)  |                     dummy(i,n) = dummy(i,n-1) 

(   69)  +--------------        enddo 

(   70)                    end  

      subroutine bound(dummy) 

      use param 

      double precision dummy(n,n) ! Distribute with the option -Mautodist 

      do i=1,n 

!HPF$  ON HOME(dummy(:,1)), LOCAL 

        dummy(i,1) = dummy(i,2) 

!HPF$  ON HOME(dummy(:,n)), LOCAL 

        dummy(i,n) = dummy(i,n-1) 

      enddo 

      end 
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HPF compiler options -Mautodist and –Mhpfout.  

 

5.3 Debug 

This section describes bugs that frequently appear in HPF programs and how to detect and 

fix them.  

It is possible to execute HPF programs as serial Fortran programs by compiling them using 

the NEC Fortran compiler. Therefore, you should confirm that the programs run without 

problems before executing them as HPF programs.  

The following subsections describe possible causes of problems when HPF programs do not 

run though they run as serial Fortran programs. 

 

5.3.1 Inconsistency between Actual and Dummy Arguments 

The shapes and types of actual arguments and corresponding dummy arguments must be 

the same in principle in HPF. Therefore the following descriptions that often appear in old 

FORTRAN programs are not allowed.  

 

 Array Element Actual Arguments Associated with Dummy Array Arguments 

Figure 119 Array Element Actual Arguments and Dummy Array Arguments 

 

The arguments as shown in Figure 119 cause runtime errors with the following error 

messages and abnormal termination of the programs. 

 

     real a(100,100),b(100,100) 

     do i=1,100 

       call sub(a(1,i),b(1,i))  !  Array element actual arguments 

     enddo 

     end 

 

     subroutine sub(a,b) 

     real a(100),b(:)          ! Dummy array arguments 
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 When a dummy argument is not an assumed-shape array 

"a": Nonsequential dummy array is associated with array element or 

scalar actual. PROG=sub ELN=8 

 

 When a dummy argument is an assumed-shape array. 

"b": Assumed-shape dummy array is associated with array element or 

scalar actual. PROG=sub ELN=8 

 

When you want to pass part of arrays as actual arguments, use array sections as shown 

in Figure 120. 

Figure 120  Array Section Actual Argument 

 

 

 Mismatch in Shapes of Actual Arguments and Corresponding Dummy Arguments 

The shape of an actual argument must be the same as that of the corresponding dummy 

argument in HPF. 

     real(10) a(100,100),b(100,100) 

     do i=1,100 

       call sub(a(:,i),b(:,i)) ! Array section actual arguments 

     enddo 

     end 

 

     subroutine sub(a,b) 

     real a(100),b(:) 
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Figure 121  Shapes of Actual Arguments and Dummy Arguments Differ 

 

The arguments as shown in Figure 121 cause runtime errors with the following error 

messages and abnormal termination of the programs. 

 

 When ranks of actual arguments and corresponding dummy arguments differ 

"a": Dummy argument rank differs from actual. PROG=sub ELN=7 

 

 When extents along an axis differ between actual arguments and corresponding 

dummy arguments 

"b": Dummy array shape differs from actual in dim 1. PROG=sub ELN=7 

 

When you want to determine sizes of arrays at runtime, use allocatable arrays as shown 

in Figure 122. 

Figure 122  Allocatable Array 

 

Automatic arrays as shown in Figure 123 are also useful for data used within a procedure. 

     real a(10000),b(10000) 

     n = 100 

     call sub(a,b,n) 

     end 

 

     subroutine sub(a,b,n) 

     real a(n,n),b(n) 

     real, allocatable :: a(:,:) ! Allocatable array 

 

     n = 100 

     allocate(a(n,n)) 
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Figure 123  Automatic Array 

 

When you want to determine sizes of arrays declared in a procedure at the first 

invocation and use the data areas thereafter, declare allocatable arrays with the SAVE 

attribute as shown in Figure 124 and allocate them at the first invocation. 

 

Figure 124  Allocation at the First Invocation 

 

5.3.2 Inconsistency in Common Variables 

The number of variables, and type, shape, and data mapping of each variable in every 

common block must be identical in an HPF program in principle. 

The following descriptions are not allowed. 

 

  The number of variables in a common block differs across procedures 

      subroutine sub(n) 

      real :: a(n,n)    ! Automatic array 

!HPF$ DISTRIBUTE (*,BLOCK) :: a 

  subroutine sub(n) 

      integer :: iflag = 0 

      real, save, allocatable :: a(:,:) ! Allocatalbe array witht the SAVE attribute 

!HPF$ DISTRIBUTE a(*,BLOCK) 

      if(iflag.eq.0)then 

        allocate(a(n,n)) 

        iflag = 1 

      endif    
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Figure 125  The Number of Common Block Variables Differs 

 

  Data Mappings of Common Block Variables Differ across Procedures 

Figure 126  Data Mapping of a Common Block Variable Differs 

 

It is possible to detect these errors at runtime by compiling HPF programs with the HPF 

compiler option –Mcommonchk. When inconsistencies in common blocks in an HPF 

program are detected, the following error messages are output and the program 

terminates abnormally.  

 

 Inconsistency in the number of common block variables 

Inconsistency detected in the number of components of common block 

between sub1 and sub2 : /com/ PROG=sub2 

 

 Inconsistency in data mappings of common block variables 

Inconsistency detected in the number of explicitly mapped arrays of 

common block between sub1 and sub2 : /com/ PROG=sub2 

      subroutine sub1() 

      common /com/a(100,100),b(100,100) 

!HPF$ DISTRIBUTE (*, BLOCK) :: a,b 

         : 

      end 

 

      subroutine sub2() 

      common /com/a(100,100)  !  Array b is not declared. 

!HPF$ DISTRIBUTE (*,BLOCK) :: a 

      subroutine sub1() 

      common /com/a(100,100) 

!HPF$ DISTRIBUTE (*,BLOCK) :: a 

         : 

      end 

         

      subroutine sub2() 

      common /com/a(100,100)   ! No data mapping 
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Note that this option must be specified to all procedures that constitute an HPF executable 

program. Also, this option cannot be used with the HPF compiler option -Mnoentry or –

Mnoerrline. When used, only the option specified last is effective. 

 

5.3.3 Accesses out of Declared Bounds 

Accesses out of declared bounds of arrays as shown in Figure 127 are not allowed in HPF 

programs. 

Figure 127  Accesses out of the Declared Bounds of an Array 

 

It is possible to detect the accesses out of bounds at runtime by compiling HPF programs 

with the HPF compiler option –Msubchk. When the accesses out of bounds are detected, the 

following error message is output. 

 

"a" is accessed out of declared bounds along 1st dim. PROG=main ELN=5 

 

The code to detect the accesses out of bounds is generated so that vectorization and 

parallelization are not inhibited as much as possible, but can still cause performance 

degradation. 

Note that this option cannot be used with the HPF compiler option -Mnoentry or –Mnoerrline. 

When used, only the option specified last is effective.  

 

 

      program main 

      real a(100,100) 

!HPF$ DISTRIBUTE a(BLOCK, *) 

      do i=1,10000 

        a(i,1) = i 

      enddo 
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5.3.4 Wrong INDEPENDENT Directives 

The loop nest in Figure 128 has the loop-carried dependency and is not parallelizable because 

the value of the variable l that is defined in the previous iteration is referenced.  

Figure 128  INDEPENDENT Directive to a Non-parallelizable Loop 

 

 

The HPF compiler ignores all INDEPENDENT directives and performs only automatic 

parallelization by specifying the HPF compiler option –Mnoindependent. When this option 

enables correct program execution, the program can contain wrong INDEPENDENT 

directives.  

It is useful to check loops that are not judged as parallelizable automatically referring to 

parallelization information lists for finding wrong INDEPENDENT directives. 

 

 

 

 

 

 

 

 

 

 

 

        l=0 

!HPF$  INDEPENDENT,NEW(I,J)  ! Wrong 

        do i=1,n 

do j=1,n 

  l = l+1 

  a(j,i) = l 

enddo 

        enddo 
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Appendix A Syntax of HPF Directives 

A.1 Directives in the Specification Part 

A.1.1 DISTRIBUTE Directive 

 

In the case of specifying a processor arrangement 

!HPF$ DISTRIBUTE a ( <distribution-format>,… ) ONTO p 

 or  

!HPF$ DISTRIBUTE ( <distribution-format>,… ) ONTO p :: a,… 

 a indicates the name of an array or template 

 p indicates the name of a processor arrangement 

 <distribution-format> is *, BLOCK[(<expression>)], GEN_BLOCK(map), or 

CYCLIC[(<expression>)] 

 * specifies that the corresponding axis of the array or template is not 

distributed. 

 BLOCK specifies that the corresponding axis of the array or template is 

distributed evenly. The width of the distribution can be specified with the 

optional (<expression>). The width is calculated as follows by default: 

(Extent along the corresponding axis of the array or template - 1)/(Extent 

of the corresponding axis of the processor arrangement) 

 GEN_BLOCK specifies that the corresponding axis of the array or template is 

distributed unevenly. (map) specifies the number of array elements distributed 

onto each element along the corresponding axis of the processor arrangement. 

The values of the one-dimensional array map must be defined in advance. 

 CYCLIC specifies that the corresponding axis of the array or template is 

distributed in a round-robin fashion. (<expression>) specifies the width of the 

distribution. When the width of the distribution is omitted, the width is 1.  

 

In the case of not specifying a processor arrangement 

!HPF$ DISTRIBUTE a ( <distribution-format>,… ) 

 or  

!HPF$ DISTRIBUTE ( <distribution-format>,… ) :: a,… 
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A.1.2 TEMPLATE Directive 

 

A.1.3 PROCESSORS Directive 

 

!HPF$ PROCESSORS p ( <>,… ) 

 or  

!HPF$ PROCESSORS ( <>,… ) :: p,… 

 p indicates the name of a processor arrangement 

 <> indicates bounds along each axis of a processor array. For example, in the 

following PROCESSORS directive: 

!HPF$ PROCESSORS p(n1,n2) 

The number of abstract processers is the same as the size of the processor array p, 

n1*n2, and the rank of the processors array, 2, is equal to the number of distributed 

axes of arrays. 

!HPF$ TEMPLATE t ( <>,… )  

 or  

!HPF$ TEMPLATE ( <>,… ) :: t,… 

 t indicats a template 

 <> indicates bounds along each axis of templates 
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A.1.4 ALIGN Directive 

 

A.1.5 SHADOW Directive 

 

A.1.6 SEQUENCE Directive 

!HPF$ ALIGN a ( <i>,… ) WITH t( <f(i)>,… ) 

 or  

!HPF$ ALIGN ( <i>,… ) WITH t( <f(i)>,… ) :: a,… 

 a indicates the name of an array 

 t indicates the name of an array or template 

 <i> indicates an integer scalar variable or *. * specifies the axis is not aligned. 

 <f(i)> indicates a linear expression of <i> s*<i>+o, or *, where s and o are integer 

expressions. 

 When <f(i)> is a linear expression of <i> s*<i>+o, the element of array a <i> 

is aligned with the element of the align-target t s*<i>+o. 

 When <f(i)> is *, the whole array a is replicated along the axis of the processor 

array to which the axis of the align-target t to which * is specified corresponds. 

   

!HPF$ SHADOW a ( <shadow width>,… ) 

         or  

!HPF$ SHADOW ( <shadow width>,… ) :: a,… 

 a indicates the name of an array 

 <shadow width> is n or l : u, where n is equivalent to n : n, which indicates the 

lower shadow width and upper shadow width, respectively. The shadow width must 

be a constant. 

!HPF$ [NO] SEQUENCE  [ [ :: ] s,… ]  

 s is the name of an array or /common block name/. When s,… is omitted in the 

SEQUENCE directive, it is treated as if it contained all common block and variables 

that are not mapped explicitly. When s,… is omitted in the NOSEQUENCE directive, 

it is treated as if it contained all common blocks and variables. 
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A.2 Directives in the Execution Part 

A.2.1 INDEPENDENT Directive 

 

 

Perfectly Parallelizable Loops 

!HPF$ INDEPENDENT [, NEW( v,… ) ] 

 v indicates the name of a variable (NEW variable) 

 

Parallelizable Loops with Reduction  

!HPF$ INDEPENDENT [, NEW( v,… ) ], <REDUCTION clause>,… 

 v indicates the name of a variable (NEW variable) 

 <REDUCTION clause> is 

REDUCTION( [ <reduction-kind1> : ] r,… ) 

 or  

REDUCTION( [ <reduction-kind2> : ] r /p,…/,… ) 

 <reduction-kind1> is +, *, .AND., .OR., .EQV., .NEQV., MAX, MIN, IAND, 

IOR, or IEOR 

 r indicates the name of a reduction-variable 

 <reduction-kind2> is FIRSTMAX, FIRSTMIN, LASTMAX, or LASTMIN 

 p indicates the name of a position variable 

 When <reduction-kind1> : is omitted, reduction assignments must be 

described any of the following forms. 

r = r <op> <expr>  or  r = <expr> <op> r 

or 

r = <f(r, <expr>)>  or  r = <f(<expr>, r)> 

 r indicates the name of a reduction-variable 

 <op> indicates a reduction operator *, /, +, -, .AND., .OR., .EQV.,  

or  .NEQV. 

 <expr> indicates an expression that does not include the reduction 

variables and is estimated before the operation <op>. 

 <f()> indicates a reference to the function MAX, MIN, IAND, IOR, or 

IEOR 
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A.2.2 ON-HOME-LOCAL Directive Construct and Directive 

 

A.2.3 REFLECT Directive 

 

 

 

 

 

 

 

 

 

ON-HOME-LOCAL directive construct 

!HPF$ ON HOME( <array section> ) [, LOCAL[( v,… )] ] BEGIN 

        Sequence of <executable statement or construct> 

!HPF$ END ON 

 The abstract processors onto which <array section> is mapped execute the 

sequence of <executable statement or construct>. 

 v indicates the name of a variable for which data transfers are not needed. When 

( v,… ) is omitted, data transfers are not needed for all variables that appear in the 

sequence of <executable statement or construct>. 

 

ON-HOME-LOCAL directive 

!HPF$ ON HOME( <array section> ) [, LOCAL[( v,… )] ] 

 The abstract processors onto which <array section> is mapped execute the 

immediately following executable statement or construct. 

!HPF$ REFLECT [ (<shadow width>,…) ] [ :: ] a,… 

 a indicates the name of an array, which must appear in the SHADOW directive in 

the specification part of the scoping unit. 

 When <shadow width>,… is specified, the shift transfer is performed only on the 

specified part of the shadow area, which is called the partial REFLECT directive. 
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A.3 Other Features 

A.3.1 EXTRINSIC Prefix 

 

 

EXTRINSIC ( <lang> , <model> ) 

or 

EXTRINSIC ( <extrinsic-kind-keyword> )  

 <lang> is ”HPF” or “Fortran” 

 <model> is “GLOBAL”, “LOCAL”, or ”SERIAL”. ”GLOBAL”, “LOCAL”, 

and ”SERIAL” indicate global model, local model, and serial model, 

respectively.  

 <extrinsic-kind-keyward> is HPF, HPF_LOCAL, HPF_SERIAL, 

Fortran_LOCAL, or  Fortran_SERIAL, which indicate global model HPF, 

local model HPF, serial model HPF, local model Fortran, and serial model 

Fortran, respectively. 
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Appendix B Frequently Asked Questions 

A.1 Data Mapping 

 How are variables that do not appear in the DISTRIBUTE directive nor ALIGN directive 

mapped? 

 They are replicated on all abstract processors. 

 

A.2 Data Transfer 

 Redundant data transfers occur for allocatable arrays and assumed-shape arrays. 

 Map allocatable arrays and assumed-shape arrays using ALIGN directives. Refer to 

subsection 4.1.4 for details. 

 

A.3 Execution Performance and Memory Usage 

 Memory usage at runtime is too large. 

 Possible causes are as follows: 

 The shadow areas of width four are automatically allocated along the axes 

distributed with the BLOCK distribution or GEN_BLOCK distribution by default for 

efficient shift transfer. If your HPF program does not need the shift transfer, 

memory usage can be reduced by specifying the shadow width as zero. Specify 

the shadow width with the SHADOW directive or the HPF compiler option –

Moverlap=size:n as follows. 

 

 

 

 When large arrays are initialized in the specification part or using DATA 

statements, the memory area for the whole arrays is allocated on each abstract 

processor. In such cases, the memory usage can be reduced by initializing them 

at the beginning of runtime. 

 

 When data transfers occur for execution of loops or invocations of procedures, 

the memory area for the whole arrays targeted for the data transfers can be 

%> ve-hpf –Moverlap=size:0 source.hpf 
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allocated on each abstract processor. In such cases, the memory usage can be 

reduced by specifying that the loops are parallelizable or no data transfers are 

needed. You can find where data transfers occur referring to the parallelization 

information lists or diagnostic messages. 

 Specify that loops are parallelizable with the INDEPENDENT directives (+ 

REDUCTION clauses). 

 Specify that no data transfers are needed with the ON-HOME-LOCAL 

directive constructs. 

 Modify data mappings of arrays or description of loops so that necessary data 

transfers are reduced.  

 Specify data mappings so that the data mappings of actual arguments and 

corresponding dummy arguments are the same. 

 

 Arrays that do not appear in the DISTRIBUTE directive nor ALIGN directive are 

replicated on all abstract processors. Map large arrays if possible. 

  

 In the hybrid parallelization, where both the distributed-memory parallelization and 

shared-memory parallelization are performed, local variables are allocated on each 

thread. Therefore, when large local arrays are used, memory usage for the shared-

memory parallelization becomes large. In such cases, the memory usage can be 

reduced by changing local arrays into global arrays, because the memory area for 

global arrays is shared by all threads by default.  

 

 The execution performance significantly drops when the Fortran compiler option –

mparallel is used. 

 When the Fortran compiler option –mparallel is used, both the distributed-memory 

parallelization by the HPF compiler and shared-memory parallelization by the Fortran 

compiler are performed. The number of parallelization is the product of the number 

of abstract processors in HPF and number of threads for the shared-memory 

parallelization. When the number of parallelization on each VE node exceeds the 

number of cores on the VE node, the execution performance significantly drops 

because of the conflict. Specify the number of threads with the runtime environment 

variable OMP_NUM_THREADS or VE_OMP_NUM_THREAD, and the number of 

processes so that the number of parallelization does not exceed the number of cores 



Appendix B Frequently Asked Questions 

 

133 
 

on every VE node. 

 

 The execution performance is not good though major loops are parallelized and inefficient 

data transfers are not generated in the parallelization information lists and diagnostic 

messages. 

 Possible causes are as follows: 

 When data mappings with DISTRIBUTE directives, ALIGN directives, and 

SHADOW directives of actual arguments and corresponding dummy arguments 

differ, data transfers occur at the invocation of and return from the procedures. 

Check whether data transfers at procedure boundaries occur with the HPF 

runtime option –hpf –commmsg, because such data transfers cannot be detected 

at compilation time. 

 

 

 

 

The following warning message at runtime shows that data transfer between an 

actual argument and the corresponding dummy argument occurs. Modify the 

HPF program so that the data mapping of the actual argument is the same as 

that of the corresponding dummy argument referring to the name of the 

procedure and dummy argument in the warning message. 

 

"Dummy-argument name": Communication occurs at procedure boundary 

PROG="Procedure name" ELN="Line number" 

 

 The numbers of iterations of loops parallelized by the HPF compiler become 

smaller, and initial parameters and terminal parameters of loops become 

variables. As a result, the loops targeted for vectorization can be changed from 

the serial execution, and the performance can drop because of shorter vector 

length. When the FTRACE information shows that the vector length is much 

shorter than the serial execution, check whether loops which are parallelized 

and whose lengths become shorter are vectorized. Then change the loops 

targeted for vectorization using the NEC Fortran directives such as novector. 

 

%> mpirun –np 4 ./a.out –hpf -commmsg 
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 The inline expansion of procedures invoked many times can be inhibited because 

of the parallelization by the HPF compiler, which can cause performance 

degradation. 

 When procedures which are inline expanded in the serial execution do not 

have array dummy arguments, the inline expansion may be performed also 

in parallel execution with the HPF compiler option -Mnoentry. 

 When procedures which are inline expanded in the serial execution have 

array dummy arguments, the inline expansion should be performed manually. 

A.4 Miscellaneous 

 INDEPENDENT directives cause incorrect execution results. 

 Possible causes are as follows. Also, refer to subsection 5.3.4 for how to detect wrong 

INDEPENDENT directives. 

 

 INDEPENDENT directives to non-parallelizable loops result in incorrect execution 

results. In the following example, the INDEPENDENT directive cannot be 

specified because the value of the variable l that is defined in the previous 

iteration is referenced.  

 

 

 

 

 

 

 

 

 

 

 

 

 

The following modification makes the loop parallelizable, and the INDEPENDENT 

directive can be specified. 

l=0 

!HPF$  INDEPENDENT,NEW(I,J)  ! Wrong 

        do i=1,n 

do j=1,n 

  l = l+1 

  a(j,i) = l 

enddo 

        enddo 
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 INDEPENDENT directives without REDUCTION clauses to the loops that perform 

reduction computation result in wrong execution results. In the following 

example, the INDEPENDENT directive without REDUCTION clause cannot be 

specified because the loop performs the sum-reduction computation on the array 

a. 

 

 

 

 

 

 

 

 

 

 

The correct execution result can be obtained by specifying the REDUCTION 

clause to the array a as follows, or deleting the INDEPENDENT directive. 

 

!HPF$  INDEPENDENT,NEW(I,J) 

        do i=1,n 

do j=1,n 

  a(j,i) = 1+n*(i-1)*(j-1) 

enddo 

        enddo 

!HPF$  INDEPENDENT,NEW(i)  ! Wrong 

        do j=1,n 

do i=1,n 

  a(i) = a(i) + b(i,j) 

enddo 

        enddo 



Appendix B Frequently Asked Questions 

136 
 

 

 

 

 

 

 

!HPF$  INDEPENDENT,NEW(i),REDUCTION(a) 

        do j=1,n 

do i=1,n 

  a(j) = a(j) + b(i,j)l 

enddo 

        enddo 
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