

SX-Aurora TSUBASA

NEC HPF User’s Guide

- i -

Proprietary Notice

The information disclosed in this document is the property of NEC Corporation (NEC)

and/or its licensors. NEC and/or its licensors, as appropriate, reserve all patent,

copyright, and other proprietary rights to this document, including all design,

manufacturing, reproduction, use and sales rights thereto, except to the extent said

rights are expressly granted to others.

The information in this document is subject to change at any time, without notice.

Trademarks and Copyrights

 PGI is a trademark of The Portland Group, Inc.

 Linux is a registered trademark of Linus Torvalds in the United States and other

countries.

 Red Hat and Red Hat Enterprise Linux are registered trademarks of Red Hat,

Inc. in the United States and other countries.

 All other product, brand, or trade names used in this publication are the

trademarks or registered trademarks of their respective trademark owners.

- ii -

Preface

This document explains how to use the NEC HPF compiler for the Vector Engine.

The latest version of this document is available at the NEC Aurora Web Forums:

 https://www.hpc.nec/forums/

Currently, parallelization of large scale scientific programs that require super-

computers is inevitable to obtain execution performance or use large amount of

memory. However, development of distributed-memory parallel programs is very

time-consuming because programmers have to explicitly assign data and

computation to computation nodes and describe data transfer among them.

High Performance Fortran (HPF) is a set of extensions to Fortran 95 published by

HPF Forum (HPFF), which was led by Ken Kennedy of Rice University. A goal of HPF

is to enable programmers to parallelize programs for distributed-memory parallel

computers easily.

The effort to standardize HPF began in 1991, and HPF 1.0 was published as early

as in May 1993, which was revised to HPF 1.1 with minor improvements in

November 1993. As a result of further discussions in HPFF2, HPF 2.0 was published

in January 1997, in which features are reduced from HPF 1.0 to facilitate early

development of HPF compilers. HPF 2.0 also defines HPF Approved Extensions to

make up for functional insufficiency of the language.

In Japan, Japan Association for HPF (JAHPF), which consisted of domestic compiler

manufacturers and supercomputer users, started in 1997 and published HPF/JA 1.0

specification, which defines features that enable more detail control of

parallelization and data transfer in addition to main features of HPF 2.0 and HPF

Approved Extensions, in January 1999.

Description of High Performance Fortran (HPF) Language in this document is based on

the following documents published by HPF Forum.

 High Performance Fortran Language Specification, High Performance Fortran

Forum, November 10, 1994 Version 1.1

 High Performance Fortran Language Specification, High Performance Fortran

Forum, January 31, 1997 Version 2.0

- iii -

Description of HPF/JA, which is an extension of HPF, in this document is based on the

following document.

 HPF/JA Language Specification, JAHPF (Japan Association for High

Performance Fortran), January 31, 1999 Version 1.0

English Version 1.0 November 11,1999

Please refer to the documents at the following sites to learn the specifications of HPF

and HPF/JA in more detail.

 http://hpff.rice.edu/versions/

 http://site.hpfpc.org/home/former_hpfpc/gengo-shiyou

(Note) The information above is as of September, 2020.

The following is related documents for using NEC HPF.

 How to use the NEC Fortran compiler

Fortran Compiler User’s Guide (G2AF02E)

 How to use NEC MPI

NEC MPI User’s Guide (G2AM01E)

 How to use PROGINF and FTRACE

PROGINF/FTRACE User’s Guide (G2AT03E)

 How to use NQSV

NEC Network Queuing System V (NQSV) User's Guide (G2AD03E)

http://hpff.rice.edu/versions/
http://site.hpfpc.org/home/former_hpfpc/gengo-shiyou

- iv -

Definitions and Abbreviations

Term Description

Vector Engine (VE) The core part of the SX-Aurora TSUBASA system, on which

applications are executed. A VE is implemented as a PCI

Express card and attached to a server called a vector host.

Vector Host (VH) A Linux (x86) server to which VEs are attached, in other

words, a host computer equipped with VEs.

Host A VH or VE

NQSV A job scheduler for the SX-Aurora TSUBASA.

NQSV request

execution

Program execution using NQSV.

VE number An identification number of a VE. VE numbers of VEs

attached to a VH are consecutive integer values starting at

0.

VH name The hostname of a VH, which is a host computer.

MPI Abbreviation of Message Passing Interface. MPI is a

standard specification for a communication library. It can be

used together with OpenMP or automatic parallelization.

Contents

- v -

Contents

Chapter1 Getting Started .. 15

1.1 Introduction to HPF ... 15

1.1.1 Distributed-Memory Parallel Programming with HPF 15

1.1.2 HPF Program Examples ... 17

1.1.3 Overview of the HPF Specification .. 18

1.2 Introduction to the NEC HPF compiler ... 19

1.2.1 Compilation and Link of HPF Programs .. 19

1.2.2 Execution of HPF Programs ... 19

1.2.3 Notes and Restrictions .. 20

Chapter2 Compilation and Link of HPF Programs ... 23

2.1 Compilation and Link of HPF Programs ... 23

2.2 File Name Conventions ... 24

2.2.1 Input Files .. 24

2.2.2 Output Files .. 24

2.3 Compiler Options ... 25

2.3.1 NEC Fortran Compiler Directives .. 35

2.3.2 NEC Fortran Compiler Options ... 35

2.3.3 NEC MPI Compiler Options .. 36

2.4 Environment Variables ... 36

Chapter3 Execution of HPF Programs .. 37

3.1 Execution of HPF Programs ... 37

3.2 Runtime Options ... 38

3.2.1 NEC Fortran Compiler Runtime Environment Variables 40

3.2.2 NEC MPI Runtime Options ... 40

3.2.3 NEC MPI Environment Variables ... 40

Chapter4 HPF Programming ... 43

4.1 Data Mapping ... 43

4.1.1 DISTRIBUTE Directive .. 43

4.1.2 Selection of Distribution Format ... 50

4.1.3 PROCESSORS Directive ... 50

4.1.4 ALIGN Directive ... 53

Contents

- vi -

4.1.5 TEMPLATE Directive ... 58

4.1.6 Summary of Data Mapping in HPF .. 60

4.1.7 Variables That Cannot Be Mapped .. 61

4.2 Computation Mapping and Data Transfer ... 62

4.2.1 INDEPENDENT Directive ... 62

4.2.2 NEW Clause .. 66

4.2.3 REDUCTION Clause .. 71

4.2.4 Parallelization of Loops with Reference to Procedures 72

4.2.5 ON-HOME-LOCAL Directive Construct and Directive 75

4.2.6 SHADOW Directive and REFLECT Directive................................... 79

4.3 Extended Intrinsic Procedures ... 83

4.3.1 Timing Procedures ... 83

4.4 Clean up of Fortran Code .. 85

Chapter5 Tuning and Debug .. 89

5.1 Tuning ... 89

5.1.1 Parallelization Information List ... 89

5.1.2 Diagnostic Messages .. 94

5.1.3 Examples of Tuning of HPF Programs .. 95

5.2 An Easy and Simple Way of Developing HPF Programs 106

5.3 Debug ... 117

5.3.1 Inconsistency between Actual and Dummy Arguments 117

5.3.2 Inconsistency in Common Variables .. 120

5.3.3 Accesses out of Declared Bounds ... 122

5.3.4 Wrong INDEPENDENT Directives .. 123

Appendix A Syntax of HPF Directives .. 125

A.1 Directives in the Specification Part ... 125

A.1.1 DISTRIBUTE Directive ... 125

A.1.2 TEMPLATE Directive .. 126

A.1.3 PROCESSORS Directive .. 126

A.1.4 ALIGN Directive .. 127

A.1.5 SHADOW Directive .. 127

A.1.6 SEQUENCE Directive ... 127

A.2 Directives in the Execution Part ... 128

A.2.1 INDEPENDENT Directive .. 128

Contents

- vii -

A.2.2 ON-HOME-LOCAL Directive Construct and Directive 129

A.2.3 REFLECT Directive .. 129

A.3 Other Features .. 130

A.3.1 EXTRINSIC Prefix ... 130

Appendix B Frequently Asked Questions .. 131

A.1 Data Mapping ... 131

A.2 Data Transfer .. 131

A.3 Execution Performance and Memory Usage 131

A.4 Miscellaneous .. 134

Appendix C History .. 137

History table ... 137

List of tables

- viii -

List of tables

Table 1 Suffixes of Input Files.. 24

Table 2 Suffixes of Output Files ... 24

Table 3 Common Compiler Options .. 25

Table 4 HPF Compiler Options ... 27

Table 5 HPF Runtime Options .. 38

Table 6 Marks in the Parallelization Information List 90

List of figures

- ix -

List of figures

Figure 1 Data Transfer ... 16

Figure 2 HPF Programming ... 16

Figure 3 Fortran Program Example... 17

Figure 4 HPF Program Example ... 17

Figure 5 HPF compiler .. 19

Figure 6 Syntax of DISTRIBUTE Directive .. 44

Figure 7 Example of the DISTRIBUTE Directive 45

Figure 8 One-Dimensional Distribution onto Four Abstract Processors 45

Figure 9 Parallel Execution of the Loop by Four Abstract Processors 45

Figure 10 One-Dimensional BLOCK Distribution of Two-Dimensional Array . 46

Figure 11 One-Dimensional Distribution of Two-Dimensional Array onto Four

Abstract Processors ... 46

Figure 12 Explicit Width of the BLOCK Distribution 46

Figure 13 CYCLIC Distribution ... 47

Figure 14 CYCLIC Distribution onto Four Abstract Processors 47

Figure 15 Explicit Width of the CYCLIC Distribution 47

Figure 16 CYCLIC(2) Distribution onto Four Abstract Processors 47

Figure 17 GEN_BLOCK Distribution .. 48

Figure 18 GEN_BLOCK Distribution onto Four Abstract Processors 48

Figure 19 Sum of Triangular Matrices ... 48

Figure 20 BLOCK Distribution along the Second Axis 49

Figure 21 Unbalanced Loads between Abstract Processors 49

Figure 22 GEN_BLOCK Distribution along the Second Axis 49

Figure 23 Sum of the Triangular Matrices with the GEN_BLOCK Distribution

 .. 50

Figure 24 Syntax of PROCESSORS Directive .. 51

Figure 25 One-Dimensional Distribution onto a Rank-One Processor Array . 51

Figure 26 Two-Dimensional Distribution onto a Rank-Two Processor Array . 51

Figure 27 Use of the Intrinsic Function NUMBER_OF_PROCESSORS() 52

Figure 28 Omission of PROCESSORS Directives 52

Figure 29 Processor Arrays with Different Shapes 52

List of figures

- x -

Figure 30 Necessary Data Size is Determined at Runtime 53

Figure 31 Distribution Using Allocatable Arrays and Automatic Arrays 53

Figure 32 BLOCK Distribution of Allocatable Arrays 54

Figure 33 BLOCK Distribution Leads Data Transfer 54

Figure 34 Syntax of ALIGN Directive .. 55

Figure 35 Data Mapping with the ALIGN Directive 56

Figure 36 Effect of the ALIGN Directive ... 56

Figure 37 Assumed-Shape Arrays and Automatic Arrays 56

Figure 38 Arrays with Different Declared Bounds 57

Figure 39 BLOCK Distribution of Arrays with Different Declared Bounds 57

Figure 40 Alignment of Arrays with Different Declared Bounds 57

Figure 41 Arrays with Different Declared Bounds 58

Figure 42 Alignment in which Aligned Arrays run out of the Align Target ... 58

Figure 43 Syntax of TEMPLATE Directive ... 59

Figure 44 Data Mapping Using a Template .. 59

Figure 45 Loop where Arrays are Accessed with Different Subscripts 60

Figure 46 Alignment of Arrays Accessed with Different Subscripts 60

Figure 47 Data Mapping in HPF ... 61

Figure 48 Syntax of SEQUENCE Directive .. 61

Figure 49 INDEPENDENT Loop .. 62

Figure 50 Loop-Carried Dependency .. 63

Figure 51 Syntax of the INDEPENDENT Directive 64

Figure 52 Example of a Loop Nest Not Parallelized Automatically 65

Figure 53 Insertion of the INDEPENDENT Directive................................. 66

Figure 54 Loop with a Work Variable .. 66

Figure 55 INDEPENDENT Directive with the NEW Clause 67

Figure 56 Loop Nest with Array Work Variable 68

Figure 57 INDEPENDENT Directive with Array NEW Variables 69

Figure 58 NEW Variable Defined in Multiple INDEPENDENT Loops 70

Figure 59 Reduction Loop ... 71

Figure 60 INDEPENDENT Directive with REDUCTION Clause 72

Figure 61 Where to Specify the REDUCTION Clause 72

Figure 62 Loop with a Reference to a Procedure 73

Figure 63 EXTRINSIC Prefix .. 74

List of figures

- xi -

Figure 64 Fortran_LOCAL Procedure Invoked in the INDEPENDENT Loop ... 75

Figure 65 Boundary Processing Loop .. 76

Figure 66 ON-HOME-LOCAL Directive Construct That Encloses the Whole Loop

 .. 76

Figure 67 Matrix-Vector Product in CRS Format 77

Figure 68 Mapping of Arrays in CRS Format .. 77

Figure 69 ON-HOME-LOCAL Directive Construct to a Matrix-Vector Product 78

Figure 70 ON-HOME-LOCAL Directive Construct and Directive 79

Figure 71 Loop with References to Adjacent Elements 79

Figure 72 References between Adjacent Abstract Processors 80

Figure 73 Shift Transfer .. 80

Figure 74 Parallel Execution Referencing the Shadow Area 80

Figure 75 Width of Adjacent References are Determined at Runtime 81

Figure 76 SHADOW Directive, REFLECT Directive, and ON-HOME-LOCAL

Directive .. 82

Figure 77 Syntax of the SHADOW Directive ... 82

Figure 78 Syntax of the REFLECT Directive.. 83

Figure 79 Address Passing (Not Allowed in HPF) 86

Figure 80 Array Section Actual Argument .. 87

Figure 81 Assumed-Size Array .. 87

Figure 82 Explicit Shape Array ... 87

Figure 83 Example of an HPF Program ... 89

Figure 84 Example of the Parallelization Information List 90

Figure 85 Example of the Detailed Parallelization Information List 93

Figure 86 Parallelization Information List with Loop Optimization Information

 .. 94

Figure 87 Loop Nest that Contains a Work Array 95

Figure 88 INDEPENDENT Directive with a NEW Clause for a Work Array 96

Figure 89 Subscripts along the Distributed Axis are Different. 97

Figure 90 Loop Fission ... 97

Figure 91 Boundary Processing Loop .. 98

Figure 92 ON-HOME-LOCAL Directive to Boundary Processing 98

Figure 93 Loop that Contains Boundary Processing 99

Figure 94 Loop Peeling of Boundary Processing 100

List of figures

- xii -

Figure 95 Constant Subscript in the Distributed Axis 101

Figure 96 Subscript Using a Linear Expression of the DO Variable 101

Figure 97 Actual Arguments with Different Data Mappings 102

Figure 98 Copies of a Procedure Corresponding to Data Mappings of the

Argument ... 102

Figure 99 Data Mappings of the Actual Argument and Dummy Argument Differ

 .. 103

Figure 100 Explicit Data Mapping of the Dummy Argument 104

Figure 101 Element by Element I/O ... 104

Figure 102 I/O of Whole Arrays ... 104

Figure 103 Loop Nest that Performs Reduction Computation 105

Figure 104 The Outermost Loop Should be Perfectly Parallelizable 105

Figure 105 Sample Program: Module ... 106

Figure 106 Sample Program: Main Program .. 107

Figure 107 Sample Program: Subroutine Bound 108

Figure 108 Parallelization Information List: Main Program 109

Figure 109 Data Transfers for Line 26 ... 110

Figure 110 DISTRIBUTE Directive Not to Distribute the Rank One Array IDXX

 .. 110

Figure 111 DISTRIBUTE Directive Not to Distribute the Rank Two Array C 111

Figure 112 Data Transfers for Line 40 ... 111

Figure 113 INDEPENDENT Directive with a REDUCTION Clause 112

Figure 114 Parallelization Information List after Insertion of HPF Directives

 .. 113

Figure 115 Copy of a Procedure (Procedure Cloning) 114

Figure 116 Parallelization Information List: Subroutine Bound 115

Figure 117 Parallelization Information List: Subroutine Bound_nodist 116

Figure 118 ON-HOME-LOCAL Directives to Boundary Processing 116

Figure 119 Array Element Actual Arguments and Dummy Array Arguments 117

Figure 120 Array Section Actual Argument .. 118

Figure 121 Shapes of Actual Arguments and Dummy Arguments Differ ... 119

Figure 122 Allocatable Array ... 119

Figure 123 Automatic Array .. 120

Figure 124 Allocation at the First Invocation .. 120

List of figures

- xiii -

Figure 125 The Number of Common Block Variables Differs 121

Figure 126 Data Mapping of a Common Block Variable Differs 121

Figure 127 Accesses out of the Declared Bounds of an Array 122

Figure 128 INDEPENDENT Directive to a Non-parallelizable Loop 123

List of figures

- xiv -

Chapter1 Getting Started

- 15 -

Chapter1 Getting Started

1.1 Introduction to HPF

1.1.1 Distributed-Memory Parallel Programming with HPF

Program development for distributed-memory parallel computers requires consideration of

the following three points:

 Data Mapping

It is necessary to decide which part of data should be allocated on which process, which

is called data mapping.

Access to data allocated on remote processes involves much higher overhead compared

with that allocated on the local process. Therefore, data used in a series of processing

should be allocated on the same process.

 Processing Assignment (Computation Mapping)

It is necessary to decide which processing such as computations, assignments, and

branches should be executed on which process. This is called computation mapping.

Generally, to achieve N-times speed-up using N processes, it is necessary for processes

to share the processing equally and processing on each process must be able to be

executed simultaneously.

 Data Transfer

When a process that performs some processing differs from a process on which data

needed for the processing is allocated, the data has to be transferred from the latter

process to the former process as shown in Figure 1 since the former process cannot

directly access the data on the latter.

Chapter1 Getting Started

- 16 -

Figure 1 Data Transfer

Moreover, synchronization between the processes is also necessary before and after

the data transfer.

It is really time-consuming and error-prone to develop high-performance parallel programs

considering all these points as in parallel programming with MPI. The basic concept of HPF is

that programmers only decide data mapping, and HPF compilers decide computation

mapping and generate necessary data transfer and synchronization among processes

automatically according to the data mapping. Therefore, programmers can develop parallel

programs as if all processes could access all data on all processes without considering whether

data is allocated on the local process or remote processes. This programming model is called

global model in HPF.

HPF compilers parallelize programs by mainly assigning iterations of parallelizable loops to

processes. HPF compilers decide computation mapping so that data can be accessed locally

as much as possible. Therefore, the main task of programmers in HPF is to map arrays along

the axis accessed by parallelizable loops as shown in Figure 2.

Figure 2 HPF Programming

Chapter1 Getting Started

- 17 -

1.1.2 HPF Program Examples

The following program assigns sum of two arrays a and b to the array c.

Figure 3 Fortran Program Example

It is possible to compile and execute this program with HPF compilers as it is. However, HPF

compilers do not parallelize this program at all for the following reason. HPF compilers allocate

whole arrays for which HPF directives are not specified on every process and assign

processing on the arrays so that each process accesses only data on itself as much as possible.

As a result, all processes execute all processing, and no speed-up is obtained no matter how

many processes execute.

It is necessary to specify data mapping of the arrays to parallelize this program with HPF. The

second line of Figure 4 is a DISTRIBUTE directive, the most basic HPF directive for data

mapping. This directive specifies that the arrays a, b, and c should be distributed onto

processes evenly.

Figure 4 HPF Program Example

When this program is compiled and linked with HPF compilers and executed on two processes,

real a(10), b(10), c(10)

 :

 do i=1, 10

 c(i) = a(i) + b(i)

 enddo

real a(10), b(10), c(10)

!HPF$ DISTRIBUTE (BLOCK) :: a, b, c

 :

 do i=1, 10

 c(i) = a(i) + b(i)

 enddo

Chapter1 Getting Started

- 18 -

process 0 and process 1, arrays are split evenly and the first half is allocated on process 0,

and the second half on process 1. As for the processing, the first half of the loop is executed

by process 0, and the second half by process 1 so that each process accesses only data on

itself as much as possible. As a result, this program is parallelized well.

In this way, what programmers mainly have to do in HPF programming is to specify data

mapping of arrays by inserting HPF directives into serial Fortran programs, which are treated

as comment lines by Fortran compilers.

1.1.3 Overview of the HPF Specification

The HPF specification consists of the HPF 2.0 specification, HPF Approved Extensions, and

HPF/JA Extensions. NEC HPF’s extensions are also available. These are categorized in the

following three features.

 Data Mapping Related Directives

Directives to specify how to map arrays onto processes, which are the main feature of

HPF.

 Computation Mapping and Data Transfer Related Directives

HPF compilers sometimes fail to judge parallelizable loops as parallelizable or select

optimal assignment of processing to processes, or generate unnecessary data transfer.

In such cases, programmers can specify parallelizable loops (INDEPENDENT directive)

or optimal assignment of processing to processes (ON-HOME directive), or that data

transfer is not needed.

 Other Features

HPF defines various other features including intrinsic procedures such as

NUMBER_OF_PROCESSORS(), library procedures such as mapping inquiry procedures

and array computation procedures, the EXTRINSIC procedure feature, which enables

HPF procedures to call non-HPF procedures.

Chapter1 Getting Started

- 19 -

Usage of HPF directives is explained in Chapter4. Please refer to High Performance Fortran

Language Specification and HPF/JA Language Specification for the accurate specifications of

HPF directives.

1.2 Introduction to the NEC HPF compiler

1.2.1 Compilation and Link of HPF Programs

It is possible to compile and link HPF programs with the HPF compilation command ve-hpf.

Execution of the command ve-hpf generates executable HPF programs parallelized from HPF

source programs as shown in Figure 5. NEC Fortran compiler (version 3.0.7 or after) in NEC

SDK and NEC MPI are required to use NEC HPF. Please refer to Chapter2 for details of

compilation and link of HPF programs.

Figure 5 HPF compiler

1.2.2 Execution of HPF Programs

HPF executable programs are actually MPI executable programs with references to the MPI

library. Therefore, it is possible to execute HPF executable programs with the command

mpirun or mpiexec just like MPI executable programs. Refer to Chapter3 for details of

Chapter1 Getting Started

- 20 -

execution of HPF programs.

1.2.3 Notes and Restrictions

 The execution performance of formatted I/O is not fully tuned. Therefore, use

unformatted I/O for reading or writing large size data if possible.

 Derived types can be used only for declaring shadow areas. Therefore, only derived

types whose only component is a one-dimensional array of type integer can be used.

Also, derived types cannot be mapped.

 Derived type arrays cannot appear in DATA statements.

 Derived type constructors whose components include array constructors cannot appear

in DATA statements.

 Characteristics of pointer dummy arrays cannot be used for declaring other variables.

For example, pointer dummy arrays cannot be referenced as the argument of the

intrinsic functions LBOUND, UBOUND, or SIZE as follows:

 Named multi-dimensional array constants cannot appear in initialization expressions.

Especially, they cannot appear in the following contexts:

 Case expressions in CASE statements

 Kind parameters in declaration statements

 KIND arguments of intrinsic procedures

 Initialization expressions in PARAMETER statements or declarations statements.

For example, the following description is not allowed.

subroutine sub(p)

integer, pointer :: p(:,:)

integer, dimension(lbound(p,1):ubound(p,1), size(p,2)) :: a ! Reference of p

Chapter1 Getting Started

- 21 -

 Named array constants declared in modules cannot be referenced in initialization

expressions using the use association. Especially, named arrays and derived types

declared in modules cannot appear in the following context.

 Case expressions in CASE statements

 Kind parameters in declaration statements

 KIND arguments of intrinsic procedures

 Initialization expressions in PARAMETER statements or declarations statements.

integer, parameter, dimension(2,2) :: x = reshape((/1,2,3,4/), (/2,2/))

integer, parameter :: y = x(1,2) ! Named multi-dimensional array constant x

Chapter1 Getting Started

- 22 -

Chapter2 Compilation and Link of HPF Programs

- 23 -

Chapter2 Compilation and Link of HPF Programs

This chapter describes how to compile and link HPF programs.

2.1 Compilation and Link of HPF Programs

Firstly, execute the following command to read the MPI setup script each time you log in to

a VH, in order to set up the MPI and Fortran compilation environment. The setting is available

until you log out.

(In the case of bash)

%> source /opt/nec/ve/mpi/{version}/bin/necmpivars.sh

(In the case of csh)

%> source /opt/nec/ve/mpi/{version}/bin/necmpivars.csh

Here, {version} above is the directory name corresponding to the version of NEC MPI you

use. For example, execute the following command to use NEC MPI version 2.5.0.

(In the case of NEC MPI version 2.5.0 and bash)

%> source /opt/nec/ve/mpi/2.5.0/bin/necmpivars.sh

Please refer to NEC MPI User’s Guide for details.

After that, execute the HPF compilation command ve-hpf to compile and link HPF programs

as follows

Here,

 {options} indicates compiler options. The compiler options are HPF compiler options,

major NEC Fortran compiler options, and NEC MPI compiler options.

 {sourcefiles} indicates HPF source programs.

%> ve-hpf [{options}] {sourcefiles} [{options}]

Chapter2 Compilation and Link of HPF Programs

- 24 -

 Descriptions in [] are optional.

2.2 File Name Conventions

2.2.1 Input Files

The HPF compiler processes input files according to their suffixes as shown in Table 1.

Table 1 Suffixes of Input Files

Suffix Process

.hpf Compiles as a fixed form HPF source program.

.f Compiles as a fixed form HPF source program.

.F Preprocesses and compiles as a fixed form HPF source program.

.for Compiles as a fixed form HPF source program.

.f90 Compiles as a free form HPF source program.

.F90 Preprocesses and compiles as a free form HPF source program.

.f95 Compiles as a free form HPF source program.

.F95 Preprocesses and compiles as a free form HPF source program.

.o Links as an object file

.a Links as a library of object files

2.2.2 Output Files

The HPF compiler outputs files with suffixes shown in Table 2 according to input files and HPF

compiler options specified. It is possible to specify the name of the executable file the HPF

compiler generates with the HPF compiler option –o, which defaults to a.out.

Table 2 Suffixes of Output Files

Suffix Description

.d Static data initialization file generated during compilation, which

Chapter2 Compilation and Link of HPF Programs

- 25 -

is saved with the HPF compiler option –Mkeepstatic.

.f Fortran intermediate file with reference to HPF runtime library,

which is saved with the HPF compiler option -Mftn or –Mkeepftn.

.mod Module file generated for HPF source files with modules

.o Object file

2.3 Compiler Options

This section describes compiler options available in the HPF compilation command ve-hpf.

Table 3 shows common compiler options. The common compiler options control behaviors of

the HPF compiler and Fortran compiler. Optional specifications in suboptions are enclosed in

[] in the table.

Table 3 Common Compiler Options

Option Suboption Description

-c Stops after compiling (The object file name is

filename.o).

-D name[=value] Defines a preprocessor macro name, with value

val if specified.

-E Displays a pre-processed HPF source file to the

standard output without compilation and link.

-F Saves a pre-processed HPF source file in

filename.f.

-I directory Adds a directory directory to the search path for

include files.

-L directory Adds a directory directory to the search path for

library files. To use multiple directories for

retrieval, this option can be specified multiple

Chapter2 Compilation and Link of HPF Programs

- 26 -

Table 4 shows the HPF compiler options, which must be specified following –M and the

times in the order in which retrieval is to be

performed.

-l library Loads the library library, in addition to the

standard libraries. To retrieve multiple libraries,

this option can be specified twice or more in the

order in which retrieval is to be performed.

-O Specifies the code optimization level (0 - 4). The default is 2.

0 The HPF compiler does not perform

optimizations and passes the -O0 option to the

back-end Fortran compiler.

1 The HPF compiler does not perform

optimizations and passes the –O1 option to the

back-end Fortran compiler.

2 The HPF compiler performs optimizations and

passes the –O2 option to the back-end Fortran

compiler.

3 The HPF compiler performs optimizations and

passes the –O3 option to the back-end Fortran

compiler.

4 The HPF compiler performs optimizations and

passes the –O4 option to the back-end Fortran

compiler.

-o filename Names the object file filename.

-U name Undefines a preprocessor macro name.

-V Displays the HPF compiler version.

-v Displays the HPF compiler, backend Fortran

compiler and linker phase invocations.

Chapter2 Compilation and Link of HPF Programs

- 27 -

suboptions -Must be specified following the corresponding options without spaces.

Table 4 HPF Compiler Options

Option Suboption Description

allow_nfort_cncall Allows the Fortran compiler directive cncall.

Note that if data transfer occurs in procedures

invoked in parallelized loops, the behavior of

the program is not guaranteed.

allow_nfort_paralleldo Allows the Fortran compiler directive parallel

do. Note that if data transfer occurs in loops

parallelized by the Fortran compiler, the

behavior of the program is not guaranteed.

autodist Specifies distribution of arrays.

When the suboptions below are omitted, all arrays are

distributed along the last axis with BLOCK distribution.

 Arrays that appear in both COMMON statements and

NAMELIST statements must not be distributed. If

distributed, the behavior of the program is not

guaranteed.

 The following arrays are not distributed

 Arrays that appear in DISTRIBUTE directives,

ALIGN directives, INHERIT directives, or DYNAMIC

directives

 Arrays that appear in SEQUENCE directives

 Arrays that appear in PARAMETER statements,

EQUIVALENCE statements, or NAMELIST

statements

 Arrays of type character or derived type

 Arrays with POINTER attribute or TARGET

attribute

 Assumed size arrays

 Arrays in local procedures except for dummy array

Chapter2 Compilation and Link of HPF Programs

- 28 -

arguments

 When an HPF program uses common blocks or interface

blocks, the same option must be specified to all the files

that constitutes the HPF program.

 Distribution specified to each array is displayed with the

HPF compiler option -Minform=inform.

 You can use parallelization information files output with

the HPF compiler option -Mlist2 to judge whether

distributions of arrays are appropriate.

=all[:b] Distributes all arrays.

The binary integer b corresponds one to one,

from the least significant bit, to axes of arrays

from the last axis to the first, and the axes that

correspond to bit 1 are distributed with BLOCK

distribution. If omitted, only the last axis is

distributed with BLOCK distribution.

=rank?[:b] Rank ? arrays are distributed, where ? is an

integer.

The binary integer b corresponds one to one,

from the least significant bit, to axes of arrays

from the last axis to the first, and the axes that

correspond to bit 1 are distributed with BLOCK

distribution. If omitted, only the last axis is

distributed with BLOCK distribution.

backslash

nobackslash

 Specifies that the backslash character in quoted

strings is treated as a normal character rather

than as an escape character.

 Specifies that the backslash character in quoted

strings is treated as an escape character.

[Default]

chkhome Specifies that arrays cannot be a home array of

Chapter2 Compilation and Link of HPF Programs

- 29 -

loops if they could be accessed out of bounds in

the loops. This option prevents run-time errors

with the message “invalid alignment”, but can

cause performance degradation.

commonchk Detects inconsistencies in declarations of

COMMON block variables among procedures at

run-time.

This option has to be specified to all the

procedures that constitute an executable

program.

The -Mnoentry or -Mnoerrline option cannot

be used with this option. When any of these is

also specified, only the option specified last is

available.

cprop

nocprop

 Promote the constant propagation optimization.

However, the back-end Fortran compiler may

detect a compile-time error when this

optimization makes a denominator of division

zero.

 The constant propagation optimization is not

performed on denominators of divisions.

[Default]

dclchk

nodclchk

 Specifies that all variables must have explicit

declarations.

 Specifies that variables do not have to be

declared explicitly. [Default]

dintrin The references to the following Fortran intrinsic

procedures, HPF library procedures, and HPF

local library procedures are treated as the

references to the corresponding extended

procedures whose results are of type 8-byte

integer.

Chapter2 Compilation and Link of HPF Programs

- 30 -

 Fortran intrinsic procedures COUNT,

LBOUND, MAXLOC, MINLOC, SHAPE, SIZE,

or UBOUND

 HPF library procedures COUNT_PREFIX,

COUNT_SCATTER, COUNT_SUFFIX,

GRADE_DOWN, or GRADE_UP,

 HPF local library procedures

GLOBAL_SHAPE, GLOBAL_SIZE,

LOCAL_BLKCNT, LOCAL_LINDEX, or

LOCAL_UINDEX

dlines

nodlines

 In fixed source form, the HPF compiler treats

lines containing "*", "D", or "d" at column 1 as

valid statements.

In free source form, the compiler treats lines

beginning with "!!" as valid statements.

 In fixed source form, the compiler treats lines

containing "*", "D", or "d" at column 1 as

comment statements.

In free source form, the compiler treats lines

beginning with "!!" as comment statements.

[Default]

extend The HPF compiler accepts 2048-column source

code.

f90 Compiles program units as Fortran 90

procedures.

This option does not affect procedures whose

extrinsic kinds are explicitly specified.

fixed

free

nofree

 Assumes source files are written in fixed form.

 Assumes source files are written in fixed form.

 Assumes source files are written in fixed form.

[Default]

Chapter2 Compilation and Link of HPF Programs

- 31 -

ftn Stops after HPF compilation and keeps the

intermediate output files.

fullref The values of all shadow objects are always set

with those of the corresponding data objects

even if only part of the shadow objects is

specified in partial REFLECT directives.

It might be faster than transferring only part of

shadow objects because of reuse of data

transfer information in such cases that patterns

of partial REFLECT directives change every

time.

Note that this option must be used consistently

to all the procedures which constitute one

executable program.

g Enables the –Mkeepftn option and invokes the

backend Fortran compiler with the –g option.

hpfout Generates HPF source files with the

suffix .hpf.src in which DISTRIBUTE directives

specified with the –Mautodist option are

inserted.

info Outputs loop parallelization information into the

standard output.

inform Specifies the diagnostic message level.

=fatal Outputs diagnostic messages with the fatal

level.

=severe Outputs diagnostic messages with the severe

and fatal level.

Chapter2 Compilation and Link of HPF Programs

- 32 -

=warn Outputs diagnostic messages with the warning,

severe and fatal level. [Default]

=inform Outputs diagnostic messages of all levels.

keepftn Generates Fortran intermediate files with

references to HPF runtime library, in addition to

an HPF executable file.

keepstatic Generates static data initialization files with the

suffix .d, in addition to an HPF executable file.

list

list2

list3

nolist

 Generates list files with the suffix .lst.

 Generates parallelization information list files

with the suffix .lst, which include parallelization

and communication information.

When the Fortran compiler option –report-

format or –report-all is specified together,

vectorization and shared-memory

parallelization information is merged into the

list. Note that line numbers in messages

generated by the Fortran compiler do not

correspond to those in HPF source programs in

this case.

 Generates parallelization information list files

with the suffix .lst, which include parallelization

and communication information and Fortran

intermediate source images.

When the Fortran compiler option –report-

format or –report-all is specified together,

vectorization and shared-memory

parallelization information is merged into the

list. Note that line numbers in messages

generated by the Fortran compiler do not

correspond to those in HPF source programs in

this case.

Chapter2 Compilation and Link of HPF Programs

- 33 -

 Does not generate list files. [Default]

local Compiles all procedures as the LOCAL model

except for those with explicit extrinsic kinds.

noentry Does not generate information for runtime error

messages. This option can improve the

execution performance. Note that when

runtime errors occur, the behavior of the

program is not guaranteed. Therefore, specify

this option only to programs that you have

confirmed run properly.

This option cannot be used with the option –

Mcommonchk, -Mprof, or –Msubchk. If used,

only the option specified last is effective.

noerrline Does not generate line number information for

runtime error messages. This option can

improve the execution performance. Note that

when a runtime error occurs, the line number

that caused the error is not displayed.

Therefore, specify this option only to programs

that you have confirmed run properly.

This option cannot be used with the option –

Mcommonchk, -Mprof, or –Msubchk. If used,

only the option specified last is effective.

nogenblock Treats GEN_BLOCK distribution as BLOCK

distribution.

noindependent Disables INDEPENDENT directives and

parallelizes programs based only on the HPF

compiler’s analysis.

nolocal Disables LOCAL clauses.

nomapnew Treats arrays that appear in INDEPENDENT

loops, are not mapped, and are not reduction

variables as NEW variables.

Chapter2 Compilation and Link of HPF Programs

- 34 -

overlap =size:n Sets the width of shadow areas, which are

added to axes distributed with BLOCK

distribution or GEN_BLOCK distribution, to n.

preprocess Preprocesses HPF source files regardless of

suffixes of them.

r8 Treats variables of type default real as type

double precision and of type default complex as

type double precision complex.

recursive Allows recursive calls. This option may

adversely affect performance. Please note that

not all procedures can be made recursive. For

example, procedures that modify variables with

the SAVE attribute or COMMON block variables

as well as procedures that perform I/O are

generally not candidates for recursion.

res2local Treats RESIDENT clauses as LOCAL clauses.

scalarnew Treats all scalar variables that appear

INDEPENDENT loops and are not reduction

variables as NEW variables.

sequence

nosequence

 Specifies that all variables have the SEQUENCE

attribute.

 Specifies that only assumed-size arrays and

variables that appear in SEQUENCE directives or

EQUIVALENCE statements have the SEQUENCE

attribute. [Default]

serial Compiles all procedures as the SERIAL model

except for those with explicit extrinsic kinds.

subchk Detects references of arrays out of declared

bounds along each axis at run-time.

This option does not check LOCAL procedures.

The -Mnoentry or -Mnoerrline option cannot

Chapter2 Compilation and Link of HPF Programs

- 35 -

be used with this option. When any of these is

also specified, only the option specified last is

available.

upcase

noupcase

 Treats uppercase letters and their lowercase

counterparts as different. Fortran keywords

must be in lowercase.

 Treats uppercase letters and their lowercase

counterparts as same. [Default]

2.3.1 NEC Fortran Compiler Directives

Major NEC Fortran compiler directives are available. The following directives are not

supported:

cncall, forced_collapse, loop_count(n), option, outerloop_unroll(n), parallel do

Also, the directive vreg can be specified in the execution part or as the last line of the

specification part.

Refer to NEC Fortran User’s Guide for details of NEC Fortran compiler directives.

2.3.2 NEC Fortran Compiler Options

Major NEC Fortran compiler options are available in addition to the common compiler options.

The following NEC Fortran compiler options are not available. Refer to NEC Fortran User’s

Guide for details of NEC Fortran compiler options.

-S, -cf, -fsyntax-only, -x, @<file-name>, -fivdep, -floop-count=n, -fopenmp, -pthread, -

fdefault-integer=n, -fdefault-double=n, -fdefault-real=n, -std=standard, -use, -W, -report-

file, -report-append-mode, -dD, -dl, -dM, -dN, -E, -H, -I-, -M, -MD, -MF <filename>, -MP, -

MT <target>, -fpp, -nofpp, -fpp-name, -isysroot, -isystem, -nostdinc, -P, -Wp, -Bdynamic, -

Bstatic, -static, -shared, --sysroot, -B, -fintrinsic-modules-path, -module, --help, -print-file-

Chapter2 Compilation and Link of HPF Programs

- 36 -

name, -print-prog-name, -noqueue, --help, --version

When the NEC Fortran compiler option –report-all or –report-format is specified, the

intermediate source parallelized by the HPF compiler is output in the format list and line

numbers in the intermediate source are displayed in the Fortran compiler messages. When

the HPF compiler option –Mlist2 or –Mlist3 is specified together, the vectorization and shared-

memory parallelization information is merged into the parallelization information list

generated by the HPF compiler.

2.3.3 NEC MPI Compiler Options

NEC MPI compiler options -mpiprof, -show, -ve, -static-mpi, and –shared-mpi are available.

Refer to NEC MPI User’s Guide for details of NEC MPI compiler options.

2.4 Environment Variables

This section describes environment variables available at compilation time.

 VE_HPF_COMPILER_PATH

When you use the HPF compiler that is not at the standard path /opt/nec/ve/bin/ve-

hpf, this environment variable enables the omission of specifying the path. For example,

when you use the HPF compiler /opt/nec/ve/hpf/1.0.0/bin/ve-hpf, perform the

following commands.

(For bash)

%> export VE_HPF_COMPILER_PATH=/opt/nec/ve/hpf/1.0.0

%> export PATH=${VE_HPF_COMPILER_PATH}/bin:$PATH

%> ve-hpf

Chapter3 Execution of HPF Programs

- 37 -

Chapter3 Execution of HPF Programs

This chapter describes how to execute HPF programs.

3.1 Execution of HPF Programs

Firstly, execute the following command to read the MPI setup script each time you log in to

a VH, in order to set up the MPI and Fortran compilation environment. The setting is available

until you log out.

(In the case of bash)

%> source /opt/nec/ve/mpi/{version}/bin/necmpivars.sh

(In the case of csh)

%> source /opt/nec/ve/mpi/{version}/bin/necmpivars.csh

Here, {version} above is the directory name corresponding to the version of NEC MPI you

use. For example, execute the following command to use NEC MPI version 2.5.0.

(In the case of NEC MPI version 2.5.0 and bash)

%> source /opt/nec/ve/mpi/2.5.0/bin/necmpivars.sh

It is possible to execute HPF executable programs with the MPI execution command mpirun

or mpiexec as follows, as with MPI executable programs.

Here,

 {mpioptions} means MPI runtime options.

 {hpfexec} means specification of program execution (HPF-execution specification). An

HPF executable program or a shell script that executes an HPF executable program can

be specified as {hpfexec}. Please note that only one {hpfexec} can appear in the MPI

%> mpirun [{mpioptions}] {hpfexec> [{args}] [-hpf {hpfoptions}]

%> mpiexec [{mpioptions}] {hpfexec} [{args}] [-hpf {hpfoptions}]

Chapter3 Execution of HPF Programs

- 38 -

execution command.

 {args} indicates argments to the HPF executable program.

 {hpfoptions} indicates HPF runtime options.

 Descriptions in [] above are optional.

3.2 Runtime Options

Table 5 shows HPF runtime options. The HPF runtime options must be specified after -hpf in

the MPI execution command. The following example specifies the HPF runtime option –

version at the execution of the HPF executable program a.out.

The environment variable HPF_OPTS can be used to specify HPF runtime options as follows.

The specification of HPF runtime options in the MPI execution command takes precedence

over that with the environment variable.

Table 5 HPF Runtime Options

HPF Runtime Option Environment Variable Description

-commmsg HPF_COMMMSG Warning messages are

output when data transfer

occurs across procedure

boundaries.

-maxxfer [n] HPF_MAXXFER [n] Specifies the maximum size

of the buffer area used for

data transfer in MB, which

must be in the range from 16

to 1024. The default value is

%> mpirun –np 2 ./a.out -hpf -version

%> setenv HPF_OPTS “-version”

Chapter3 Execution of HPF Programs

- 39 -

32.

-no_stop_message HPF_NO_STOP_MESSAGE Disables the default

FORTRAN STOP message

display when a STOP

statement with no string is

executed.

-subchk [warn|fatal] HPF_SUBCHK [warn|fatal] Specifies whether detection

of access out of declared

bounds of arrays terminates

the execution immediately or

not when the HPF compiler

option -Msubchk is specified

at compilation time. The

optional arguments are as

follows:

warn

The execution continues

after outputting the

warning message.

[Default]

fatal

The execution is aborted

with the error message.

-version HPF_V Outputs the version of the

HPF runtime library.

-V HPF_VERSION Outputs the version of the

HPF runtime library.

-zmem [yes|no] HPF_ZMEM [yes|no] Specifies whether

dynamically allocated arrays

such as allocatable arrays and

Chapter3 Execution of HPF Programs

- 40 -

mapped arrays are initialized

with the value zero. The

optional suboptions are as

follows:

yes

Initialized with the value

zero.

no

Not initialized. [Default]

3.2.1 NEC Fortran Compiler Runtime Environment Variables

Major runtime environment variables of the NEC Fortran compiler are available. The

following environment variables have no effect.

VE_FMTIO_OFFLOAD, VE_FMTIO_OFFLOAD_THRESHOLD, VE_FORTn, VE_FORT_FILEINF,

VE_FORT_FMTBUF[n], VE_FORT_RECLUNIT, VE_FORT_RECORDBUF[n],

VE_FORT_SETBUF[n], VE_FORT_UFMTENDIAN

Refer to NEC Fortran User’s Guide for details of the environment variables.

3.2.2 NEC MPI Runtime Options

Major NEC MPI runtime options of NEC MPI are available. The following options cannot be

used because HPF programs can be executed only on VE.

-vh, -sh, -vpin, -pin_mode, -pin_reserve, -cpu_list, -pin_list

Refer to NEC MPI User’s Guide for details of the runtime options.

3.2.3 NEC MPI Environment Variables

All NEC MPI environment variables are available. Refer to NEC MPI User’s Guide for details of

Chapter3 Execution of HPF Programs

- 41 -

the environment variables.

Chapter3 Execution of HPF Programs

- 42 -

Chapter4 HPF Programming

- 43 -

Chapter4 HPF Programming

This chapter explains how to parallelize Fortran programs with HPF. The HPF features are

categorized into directives for data mapping, directives for computation mapping and data

transfer, and other features.

The syntax rules in this chapter are described with the following conventions:

 Characters in Bold face are written literally as shown.

 Symbols enclosed in <> are replaced with particular symbols in actual directives.

 Characters in italics represent expressions or names of objects.

 Symbols enclosed in [] are optional.

 ,... represents optionally repeated item, separated with a comma.

4.1 Data Mapping

This section describes usage of directives for data mapping.

4.1.1 DISTRIBUTE Directive

Each process that executes an HPF programs is called an abstract processor. The number of

the abstract processors is the same as that of processes that execute an HPF program.

It is possible to distribute axes of arrays onto abstract processors using DISTRIBUTE

directives. The HPF compiler decides optimal computation mapping and generates necessary

data transfer according to the data mapping and how arrays are accessed.

.

Chapter4 HPF Programming

- 44 -

The syntax of the DISTRIBUTE directive is as follows:

Figure 6 Syntax of DISTRIBUTE Directive

In the case of specifying a processor arrangement (See subsection 4.1.3)

!HPF$ DISTRIBUTE a (<distribution-format>,…) ONTO p

 or

!HPF$ DISTRIBUTE (<distribution-format>,…) ONTO p :: a,…

 a indicates the name of an array or template

 p indicates the name of a processor arrangement

 <distribution-format> is *, BLOCK[(<expression>)], GEN_BLOCK(map), or

CYCLIC[(<expression>)]

 * specifies that the corresponding axis of the array or template is not

distributed.

 BLOCK specifies that the corresponding axis of the array or template is

distributed evenly. The width of the distribution can be specified with the

optional (<expression>). The width is calculated as follows by default:

(Extent along the corresponding axis of the array or template - 1)/(Extent

of the corresponding axis of the processor arrangement)

 GEN_BLOCK specifies that the corresponding axis of the array or template is

distributed unevenly. (map) specifies the number of array elements distributed

onto each element along the corresponding axis of the processor arrangement.

The values of the one-dimensional array map must be defined in advance.

 CYCLIC specifies that the corresponding axis of the array or template is

distributed in a round-robin fashion. (<expression>) specifies the width of the

distribution. When the width of the distribution is omitted, the width is 1.

In the case of not specifying a processor arrangement

!HPF$ DISTRIBUTE a (<distribution-format>,…)

 or

!HPF$ DISTRIBUTE (<distribution-format>,…) :: a,…

Chapter4 HPF Programming

- 45 -

Figure 7 shows an example of the BLOCK distribution, which is the most common

distribution.

Figure 7 Example of the DISTRIBUTE Directive

When this code is executed on four abstract processors p(1), p(2), p(3), and p(4), elements

of the arrays are distributed onto the abstract processors as shown in Figure 8.

Figure 8 One-Dimensional Distribution onto Four Abstract Processors

Since the corresponding elements of the arrays a and b are distributed onto the same

abstract processor, the HPF compiler assigns the computation evenly onto the abstract

processors and it is executed without data transfer as shown in Figure 9.

Figure 9 Parallel Execution of the Loop by Four Abstract Processors

The DISTRIBUTE directive in Figure 10 specifies that two-dimensional array a is distributed

with the BLOCK distribution along the second axis.

real a(11), b(11)

!HPF$ DISTRIBUTE (BLOCK) :: a, b

 :

 do i=1, 11

 b(i) = a(i) + 1

 enddo

Chapter4 HPF Programming

- 46 -

Figure 10 One-Dimensional BLOCK Distribution of Two-Dimensional Array

When four abstract processors p(1), p(2), p(3), and p(4) execute the code in parallel,

elements of the array a are distributed onto the abstract processors as shown in Figure 11.

Figure 11 One-Dimensional Distribution of Two-Dimensional Array onto Four

Abstract Processors

The width of the BLOCK distribution can be specified explicitly as shown in Figure 12.

Figure 12 Explicit Width of the BLOCK Distribution

Note that any element of arrays must be distributed onto at least one abstract processor. For

example, the code in Figure 12 cannot be executed on three abstract processors because the

array elements a(10) and a(11) are not distributed onto any abstract processors.

Array elements can be distributed in a round-robin fashion with the CYCLIC distribution as

shown in Figure 13.

real a(11,11)

!HPF$ DISTRIBUTE (*, BLOCK) :: a

real a(11)

!HPF$ DISTRIBUTE (BLOCK(3)) :: a

Chapter4 HPF Programming

- 47 -

Figure 13 CYCLIC Distribution

When the code is executed on four abstract processors p(1), p(2), p(3), and p(4), elements

of the array a are distributed as shown in Figure 16.

Figure 14 CYCLIC Distribution onto Four Abstract Processors

The width of the CYCLIC distribution can be specified explicitly as shown in Figure 15.

Figure 15 Explicit Width of the CYCLIC Distribution

When the code is executed on four abstract processors p(1), p(2), p(3), and p(4), elements

of the array a are distributed as shown in Figure 16.

Figure 16 CYCLIC(2) Distribution onto Four Abstract Processors

Array elements can be distributed unevenly using the GEN_BLOCK distribution, generalized

BLOCK distribution, as shown in Figure 17.

real a(11)

!HPF$ DISTRIBUTE (CYCLIC) :: a

real a(11)

!HPF$ DISTRIBUTE (CYCLIC(2)) :: a

Chapter4 HPF Programming

- 48 -

Figure 17 GEN_BLOCK Distribution

Here, the one-dimensional integer array map specified in parentheses after the keyword

GEN_BLOCK is called a mapping array. The size of the mapping array must be equal to or

larger than the extent along the corresponding axis of the processor arrangement and the

sum of the values of the mapping array elements must be the same as the extent along the

corresponding axis of the distributed array.

When the code is executed on four abstract processors p(1), p(2), p(3), and p(4), elements

of the array a are distributed as shown in Figure 18.

Figure 18 GEN_BLOCK Distribution onto Four Abstract Processors

The CYCLIC distribution and GEN_BLOCK distribution are useful for balancing the load. For

example, the code in Figure 19 calculates the sum of two triangular matrices.

Figure 19 Sum of Triangular Matrices

real a(13)

integer map(4)

data map/6,3,2,2/

!HPF$ DISTRIBUTE (GEN_BLOCK(map)) :: a

real a(8,8), b(8,8), c(8,8)

 :

do j=1, 13

do i=1,j

a(i,j) = b(i,j) + c(i,j)

 enddo

 endo

Chapter4 HPF Programming

- 49 -

If the second axis of the arrays are distributed with BLOCK distribution onto four abstract

processors as shown in Figure 20, the load will be unbalanced as the abstract processors

p(1), p(2), p(3), and p(4) execute 3, 7, 11, and 15 assignment statements, respectively as

shown in Figure 21.

Figure 20 BLOCK Distribution along the Second Axis

Figure 21 Unbalanced Loads between Abstract Processors

The load balance is improved by distributing arrays along the second axis with the

GEN_BLOCK distribution onto four abstract processors as shown in Figure 22, as the abstract

processors p(1), p(2), p(3), and p(4) execute 10, 11, 7, and 8 assignment statements,

respectively as shown in Figure 23.

Figure 22 GEN_BLOCK Distribution along the Second Axis

real a(8,8), b(8,8), c(8,8)

!HPF$ DISTRIBUTE (*, BLOCK) :: a, b, c

real a(8,8), b(8,8), c(8,8)

integer map(4)

 data map/4,2,1,1/

!HPF$ DISTRIBUTE (*, GEN_BLOCK(map)) :: a, b, c

Chapter4 HPF Programming

- 50 -

Figure 23 Sum of the Triangular Matrices with the GEN_BLOCK Distribution

4.1.2 Selection of Distribution Format

Appropriate distribution format depends on the access pattern of arrays. In many cases,

when the amount of computation on each array element is approximately equal, BLOCK

distribution is suitable. Otherwise, GEN_BLOCK distribution is suitable. It is easier for the HPF

compiler to parallelize loops that access arrays distributed with these distribution formats

efficiently because the granularity of parallelization tends to be large and consecutive array

elements are allocated on the same abstract processor. Moreover, it is easier to achieve high

performance because efficient data transfer patterns such as shift transfer described later are

applicable.

4.1.3 PROCESSORS Directive

It is possible to declare arrangements of abstract processors (processor arrangements) with

the PROCESSORS directive. Processor arrangements declared as arrays called processor

arrays. The size of processor arrays must be the same as the number of processes.

The syntax of the PROCESSORS directive is as follows:

Chapter4 HPF Programming

- 51 -

Figure 24 Syntax of PROCESSORS Directive

The shapes of processor arrays can be chosen freely according to programming convenience.

The ranks of processor arrays correspond to how many axes of arrays are distributed onto

processes and how many loop nests are parallelized.

Figure 25 One-Dimensional Distribution onto a Rank-One Processor Array

Figure 26 Two-Dimensional Distribution onto a Rank-Two Processor Array

Please note that the total number of parallelization is always the same as the number of

processes. In many cases, one-dimensional parallelization using rank-one processor arrays is

suitable for inhibiting overhead for parallelization.

When you would like to decide the number of abstract processors at runtime, the intrinsic

!HPF$ PROCESSORS p (<>,…)

 or

!HPF$ PROCESSORS (<>,…) :: p,…

 p indicates the name of a processor arrangement

 <> indicates bounds along each axis of a processor array. For example, in the

following PROCESSORS directive:

!HPF$ PROCESSORS p(n1,n2)

The number of abstract processers is the same as the size of the processor array p,

n1*n2, and the rank of the processors array, 2, is equal to the number of distributed

axes of arrays.

 real a(100,100)

!HPF$ PROCESSORS p(4)

!HPF$ DISTRIBUTE a(*, BLOCK) ONTO p

 real a(100,100)

!HPF$ PROCESSORS p(2,2)

!HPF$ DISTRIBUTE a(BLOCK,BLOCK) ONTO p

Chapter4 HPF Programming

- 52 -

function NUMBER_OF_PROCESSORS(), which returns the number of processes, is useful.

Figure 27 Use of the Intrinsic Function NUMBER_OF_PROCESSORS()

Actually, when the declaration of processor arrangements is omitted, arrays are automatically

distributed onto a processor array whose size is the same as the number of processes.

Therefore, the DISTRIBUTE directive in Figure 28 has the same meaning as that in Figure 27.

In particular, the declaration of processor arrangements is not necessary for one-dimensional

distribution.

Figure 28 Omission of PROCESSORS Directives

It is possible to declare processor arrays with different shapes as shown in Figure 29 as long

as their sizes are identical. However, use of processor arrays with different shapes can lead

unnecessary data transfers, because it is more difficult for the HPF compiler to judge whether

elements of arrays distributed on processor arrays with different shapes are on the same

abstract processor or not.

Figure 29 Processor Arrays with Different Shapes

 real a(100,100)

!HPF$ PROCESSORS p(NUMBER_OF_PROCESSORS())

!HPF$ DISTRIBUTE a(*, BLOCK) ONTO p

 real a(100,100)

!HPF$ DISTRIBUTE a(*, BLOCK)

 real a(100,100), b(100,100)

!HPF$ PROCESSORS p1(4), p2(2,2)

!HPF$ DISTRIBUTE a(*, BLOCK) ONTO p1

!HPF$ DISTRIBUTE b(BLOCK, BLOCK) ONTO p2

Chapter4 HPF Programming

- 53 -

4.1.4 ALIGN Directive

When necessary data sizes are decided at runtime and sizes of arrays are declared larger

than needed, some abstract processors can have no data targeted for computation since the

BLOCK distribution distributes arrays evenly. For example, when the value of the variable n

is six and four abstract processors p(1), p(2), p(3), and p(4) execute the code in Figure 30,

the array elements targeted for the computation are distributed only onto the abstract

processors p(1) and p(2), and the abstract processors p(3) and p(4) will be idle.

Figure 30 Necessary Data Size is Determined at Runtime

When necessary data sizes are determined at runtime, it is better to allocate arrays with

needed sizes using allocatable arrays or automatic arrays as shown in Figure 31.

Figure 31 Distribution Using Allocatable Arrays and Automatic Arrays

real a(11), b(11)

!HPF$ DISTRIBUTE (BLOCK) :: a, b

 read(*,*)n

 do i=1, n

 b(i) = a(i) + 1

 enddo

real, allocatable :: a(:) ! Allocatable array

!HPF$ DISTRIBUTE (BLOCK) :: a

 read(*,*)n

 allocate(a(n))

 :

 call sub(a,n)

 :

 end

 subroutine sub(a,n)

 real a(n) ! Automatic array

!HPF$ DISTRIBUTE (BLOCK) :: a

Chapter4 HPF Programming

- 54 -

Note that it is not determined until runtime which element of an allocatable array is

distributed onto which abstract processor since bounds of the array are decided at runtime.

When the bounds of the one-dimensional array a and b, which are distributed onto the

processor array p with the BLOCK distribution, are a(1:10) and b(1:11), respectively as

shown in the code Figure 32, the array elements a(6) and b(6) are allocated on the abstract

processor p(2) and p(1), respectively as shown in Figure 33. Therefore, execution of the

assignment statement a(6)=b(6) requires the data transfer. As this example shows, when

declared bounds of arrays are unknown at compilation time, data mapping only with

DISTRIBUTE directives can lead inefficient executable programs even if the bounds are

actually the same.

Figure 32 BLOCK Distribution of Allocatable Arrays

Figure 33 BLOCK Distribution Leads Data Transfer

The ALIGN directive is effective for such cases. The ALIGN directive specifies the relative

location of multiple arrays (alignment). The syntax of the ALIGN directive is as follows:

real, allocatable :: a(:), b(:) ! Allocatable arrays

!HPF$ PROCESSORS p(2)

!HPF$ DISTRIBUTE (BLOCK) ONTO p :: a, b

 read(*,*)n1, n2

 allocate(a(n1), b(n2))

 do i=1,10

 a(i) = b(i)

 enddo

Chapter4 HPF Programming

- 55 -

Figure 34 Syntax of ALIGN Directive

The ALIGN directive in Figure 35 specifies that the array element a(i) is mapped onto the

same abstract processor as the array element b(i) is mapped onto as shown in Figure 36.

The base array b of the ALIGN directive is called an align target. The data mapping of the

array a is automatically determined by the relative position with the align target b, when the

array b is distributed with a DISTRIBUTE directive. It is known at compilation time that the

array elements b(i) and a(i) are always allocated on the same abstract processor by the

correspondence between subscripts of the arrays, though the bounds of the arrays are

unknown until runtime. Therefore, the HPF compiler can generate efficient parallel code

because it can judge that no data transfer is needed.

!HPF$ ALIGN a (<i>,…) WITH t(<f(i)>,…)

 or

!HPF$ ALIGN (<i>,…) WITH t(<f(i)>,…) :: a,…

 a indicates the name of an array

 t indicates the name of an array or template

 <i> indicates an integer scalar variable or *. * specifies the axis is not aligned.

 <f(i)> indicates a linear expression s*<i>+o, or *, where s and o are integer

expressions.

 When <f(i)> is a linear expression s*<i>+o, the element <i> of array a is

aligned with the element s*<i>+o of the align-target t.

 When <f(i)> is *, the whole array a is replicated along the axis of the processor

array to which the axis of the align-target t to which * is specified corresponds.

Chapter4 HPF Programming

- 56 -

Figure 35 Data Mapping with the ALIGN Directive

Figure 36 Effect of the ALIGN Directive

The ALIGN directive is also effective for assumed-shape arrays and automatic arrays whose

bounds are declared using different variables as shown in Figure 37.

Figure 37 Assumed-Shape Arrays and Automatic Arrays

The ALIGN directive is also effective for the case that arrays with different bounds are

accessed in a loop as shown in Figure 38. If arrays with different bounds are distributed with

real, allocatable :: a(:), b(:) ! Allocatable arrays

!HPF$ PROCESSORS p(2)

!HPF$ ALIGN a(i) WITH b(i)

!HPF$ DISTRIBUTE (BLOCK) ONTO p :: b

 read(*,*)n1, n2

 allocate(a(n1), b(n2))

 do i=1,10

 a(i) = b(i)

 enddo

 :

call sub(a,100, 100)

end

subroutine sub(a,n,m)

real :: a(:) ! Assumed shape arrays

real :: b(n), c(m) ! Automatic arrays

Chapter4 HPF Programming

- 57 -

the BLOCK distribution, the ranges of the array sections allocated on each abstract processor

also become different as shown in Figure 39. This causes data transfer at runtime of the loop.

The data transfer can be inhibited with the ALIGN directive as shown in Figure 40 since the

array elements a(i) and b(i) are mapped onto the same abstract processors as the array

element c(i), which is accessed in the same iteration of the loop, is mapped onto.

Figure 38 Arrays with Different Declared Bounds

Figure 39 BLOCK Distribution of Arrays with Different Declared Bounds

Figure 40 Alignment of Arrays with Different Declared Bounds

real a(0:9), b(10), c(0:10)

do i=1,9

 c(i) = a(i) + b(i)

enddo

Chapter4 HPF Programming

- 58 -

Note that the declared bounds of the align target c ((0:10) in this case) must include the

declared bounds along the corresponding axis of the aligned arrays a and b ((0:9) and (1:10),

respectively in this case). This is because if any elements of aligned arrays run out of the

declared bounds along the corresponding axis of the align target, the elements are not

mapped onto any abstract processor, which causes errors at compilation time or runtime.

4.1.5 TEMPLATE Directive

In Figure 41, it seems good to align a(i) and b(i) which are accessed in the same iteration of

the loop. However, since the declared bounds of the arrays a and b are different, alignment

of either of them with the other causes some elements to run out of the align target. To

declare an array whose bounds include the bounds of both arrays will resolve the problem as

shown in Figure 38, but this wastes memory just for specifying the data mapping.

Figure 41 Arrays with Different Declared Bounds

Figure 42 Alignment in which Aligned Arrays run out of the Align Target

The TEMPLATE directive enables the declaration of templates, virtual arrays that do not use

memory, and is useful for such cases. The syntax of the TEMPLATE directive is as follows:

real a(0:9), b(10)

do i=1,9

 b(i) = a(i) + 1.0

enddo

Chapter4 HPF Programming

- 59 -

Figure 43 Syntax of TEMPLATE Directive

By declaring the template t whose bounds include the bounds along the corresponding axes

of arrays a and b, aligning the arrays with the template, and distributing the template as

shown in Figure 44, it is possible to map the corresponding elements of the arrays a and b

onto the same abstract processor so that no data transfer occurs at the execution of the loop

in Figure 41.

Figure 44 Data Mapping Using a Template

The subscripts of the arrays a and b are shifted by one in the loop in Figure 45 though the

declared bounds of them are identical. Therefore, data mapping only with the DISTRIBUTE

directive can also cause data transfer. Alignment of a(i+1) and b(i) with the ALIGN directive

as shown in Figure 46 enables execution of the loop without data transfer in such cases. Also

in this example, the template t whose bounds include the bounds of the arrays a and b is

used as the align target since the direct alignment of a(i+1) and b(i) causes the run-out

alignment.

!HPF$ TEMPLATE t (<>,…)

 or

!HPF$ TEMPLATE (<>,…) :: t,…

 t indicates a template

 <> indicates bounds along each axis of templates

Chapter4 HPF Programming

- 60 -

Figure 45 Loop where Arrays are Accessed with Different Subscripts

Figure 46 Alignment of Arrays Accessed with Different Subscripts

4.1.6 Summary of Data Mapping in HPF

Data mapping of arrays can be specified with the DISTRIBUTE directive and ALIGN directive

in HPF. In general, by specifying alignment of arrays with a base array or template with ALIGN

directives and distributing the base array or template with a DISTRIBUTE directive, data

mapping of all arrays is determined as shown in Figure 47.

real a(10), b(10)

do i=1,9

 b(i) = a(i+1) + 1.0

enddo

Chapter4 HPF Programming

- 61 -

Figure 47 Data Mapping in HPF

Arrays that do not appear in a DISTRIBUTE directive nor ALIGN directive and scalar variables

are replicated on all abstract processors. The replication is suitable for variables that are only

read because all abstract processors can read them without data transfer.

4.1.7 Variables That Cannot Be Mapped

When an actual argument and dummy argument whose shapes are different are associated

based on the Fortran sequence association or when variables whose shapes are different are

associated via COMMON blocks and EQUIVALENCE statements based on the Fortran storage

association, they must appear in the SEQUENCE directive in the specification part of the

scoping unit. Variables specified in the SEQUENCE directive cannot be mapped. The syntax

of the SEQUENCE directive is shown in Figure 48. The NOSEQUENCE directive can be used

for variables you want to map when the HPF compiler option –Msequence is specified.

Figure 48 Syntax of SEQUENCE Directive

!HPF$ [NO] SEQUENCE [[::] s,…]

 s is the name of an array or /common block name/. When s,… is omitted in the

SEQUENCE directive, it is treated as if it contained all common block and variables

that are not mapped explicitly. When s,… is omitted in the NOSEQUENCE directive,

it is treated as if it contained all common block and variables.

Chapter4 HPF Programming

- 62 -

4.2 Computation Mapping and Data Transfer

This section explains how to use directives for improving computation mapping and data

transfer.

4.2.1 INDEPENDENT Directive

The INDEPENDENT directive enables programmers to teach the HPF compiler that loops are

parallelizable as shown in Figure 49. Loops are parallelizable when they do not have loop-

carried dependencies. The loops which immediately follow INDEPENDENT directives are

called INDEPENDENT loops.

Figure 49 INDEPENDENT Loop

Figure 50 shows examples of the loop-carried dependencies and these loops cannot be

parallelized. In short, loops that define data in an iteration which is defined or referenced in

other iterations, or loops that has branches out of the loops are not parallelizable.

!HPF$ INDEPENDENT

do i=1,n

a(i) = i

enddo

Chapter4 HPF Programming

- 63 -

Figure 50 Loop-Carried Dependency

! True Dependency: The array element a(i) is referenced after definition

do i=1,n

a(i) = a(i) + a(i-1)

enddo

! Anti Dependency: The array element a(i) is defined after reference

do i=1,n

a(i) = a(i) + a(i+1)

enddo

! Output Dependency: The scalar variable s is defined after definition

do i=1,n

if(a(i) > 0.0) s = a(i)

enddo

! Control Dependency: Execution of the loop can terminate in the middle of the iterations

do i=1,n

if(a(i) > 0.0)goto 99

enddo

99 continue

Chapter4 HPF Programming

- 64 -

The syntax of the INDEPENDENT directive is as follows:

Figure 51 Syntax of the INDEPENDENT Directive

The HPF compiler parallelizes loops automatically without INDEPENDENT directives as if they

were INDEPENDENT loops when it can judge that the loops are parallelizable. But the HPF

Perfectly Parallelizable Loops

!HPF$ INDEPENDENT [, NEW(v,…)]

 v indicates the name of a variable (NEW variable)

Parallelizable Loops with Reduction

!HPF$ INDEPENDENT [, NEW(v,…)], <REDUCTION clause>,…

 v indicates the name of a variable (NEW variable)

 <REDUCTION clause> is

REDUCTION([<reduction-kind1> :] r,…)

 or

REDUCTION([<reduction-kind2> :] r /p,…/,…)

 <reduction-kind1> is +, *, .AND., .OR., .EQV., .NEQV., MAX, MIN, IAND,

IOR, or IEOR

 r indicates the name of a reduction-variable

 <reduction-kind2> is FIRSTMAX, FIRSTMIN, LASTMAX, or LASTMIN

 p indicates the name of a position variable

 When <reduction-kind1> : is omitted, reduction assignments must be

described any of the following forms.

r = r <op> <expr> or r = <expr> <op> r

or

r = <f(r, <expr>)> or r = <f(<expr>, r)>

 r indicates the name of a reduction-variable

 <op> indicates a reduction operator *, /, +, -, .AND., .OR., .EQV.,

or .NEQV.

 <expr> indicates an expression that does not include the reduction

variables and is estimated before the operation <op>.

 <f()> indicates a reference to the function MAX, MIN, IAND, IOR, or

IEOR

Chapter4 HPF Programming

- 65 -

compiler sometimes fails to judge parallelizable loops as parallelizable depending on access

patterns of arrays in them. When the parallelization information list or diagnostic messages

show that parallelizable loops are not parallelized or unnecessary data transfers are generated,

insertion of INDEPENDENT directives may improve execution performance of HPF programs

significantly.

The loop nest in Figure 52 can be parallelized only with the data transfer between neighboring

abstract processors (shift transfer) by assigning each iteration of the loop nest to the abstract

processor that has the left hand side g(j,inew) of the assignment statement, because the left

hand side g(:,inew) and the right hand side g(:,iold) never overlap in the loop nest. However,

the HPF compiler currently cannot find that the values of the variables iold and inew are

always different, and fails to parallelize the loop nest.

Figure 52 Example of a Loop Nest Not Parallelized Automatically

Compiling the code with the HPF compiler option –Minfo displays the following diagnostic

messages.

7, Invariant assignments hoisted out of loop

8, Distributing inner loop; 2 new loops

 expensive communication: scalar communication (get_scalar)

expensive communication: scalar communication (get_scalar)

The two diagnostic messages “expensive communication: scalar communication (get_scalar)”

 subroutine sub(n, ncycles, g)

real g(n+2,2)

!HPF$ DISTRIBUTE g(BLOCK,*)

iold=1

inew=2

do it=1, ncycles

do j = 2, n+1

g(j,inew) = g(j-1,iold) + g(j+1,iold) + g(j,iold)

enddo

enddo

iold = 3 - iold

inew = 3 - inew

enddo

Chapter4 HPF Programming

- 66 -

show that high-overhead data transfers are generated. You can find the automatic

parallelization is not successful since the necessary data transfers are only the low-overhead

shift transfer. In such cases, insert the INDEPENDENT directive immediately before the do j

loop as shown in Figure 53.

Figure 53 Insertion of the INDEPENDENT Directive

Then compiling the code with the HPF compiler option –Minfo displays the following diagnostic

messages, which show the loop nest is parallelized well without high-overhead data transfers.

7, Invariant communication calls hoisted out of loop

9, Independent loop parallelized

4.2.2 NEW Clause

The loop in Figure 54 has a loop-carried dependency and is not parallelizable because the

scalar variable s is defined and referenced in multiple iterations of the loop.

Figure 54 Loop with a Work Variable

 subroutine sub(n, ncycles, g)

real g(n+2,2)

!HPF$ DISTRIBUTE g(BLOCK,*)

iold=1

inew=2

do it=1, ncycles

!HPF$ INDEPENDENT

do j = 2, n+1

g(j,new) = g(j-1,iold) + g(j+1,iold) + g(j,iold)

enddo

enddo

iold = 3 - iold

inew = 3 - inew

enddo

 do i=1,n

s = sqrt(a(i)**2 + b(i)**2)

c(i) = s

enddo

Chapter4 HPF Programming

- 67 -

However, the INDEPENDENT directive with the NEW clause that specifies the variable s as

shown in Figure 55 can be used to specify that the loop can be parallelized by using distinct

memory areas for the variable s in distinct iterations of the loop. Variables specified in NEW

clauses are called NEW variables.

Figure 55 INDEPENDENT Directive with the NEW Clause

Note that values of NEW variables become undefined after execution of the INDEPENDENT

loops. Therefore, if the NEW variables (s in the example above) are referenced without

defining them after execution of the INDEPENDENT loop, the result of execution is not

guaranteed.

The HPF compiler usually detects scalar work variables and treats them as NEW variables

automatically. As for array work variables, users have to insert INDEPENDENT directives with

NEW clauses that specify them, since the HPF compiler cannot detect them automatically.

For example, the arrays u and flux are used as array work variables and defined and

referenced in each iteration of the loop nest in Figure 56. The do k loop, which corresponds

to the distributed axis of the array f, can be parallelized without data transfers using distinct

memory areas for these arrays in distinct iterations of the do k loop.

!HPF$ INDEPENDENT, NEW(s)

 do i=1,n

s = sqrt(a(i)**2 + b(i)**2)

c(i) = s

enddo

Chapter4 HPF Programming

- 68 -

Figure 56 Loop Nest with Array Work Variable

Compiling the code with the HPF compiler option –Minfo displays the following diagnostic

messages.

 9, Distributing loop; 2 new loops

 1 FORALL generated

 2 FORALLs generated

 no parallelism: replicated array, u

 no parallelism: replicated array, flux

 no parallelism: replicated array, flux

 10, Independent loop

 16, Independent loop

 2 FORALLs generated

subroutine rhs(f, u, n1, n2, n3)

common /com/c1, c2, q

dimension flux(2,n1), u(2,n1)

dimension f(2, n1, n2, n3)

!HPF$ DISTRIBUTE F(*,*,*,BLOCK)

 do k=2, n3-1

do j=2,n2-1

do i=1,n1

do m=1,2

u(m, i) = c1 –c2

enddo

flux(1, i) = q * u(1,i)

flux(2, i) = q * u(2,i)

enddo

do i=2, n1-1

f(1,i,j,k) = f(1,i,j,k) * (flux(1,i+1) – flux(1, i-1))

f(2,i,j,k) = f(2,i,j,k) * (flux(2,i+1) – flux(2, i-1))

 enddo

 enddo

 enddo

Chapter4 HPF Programming

- 69 -

The diagnostic messages “10, Independent loop” and “16, Independent loop” show that the

do m loop in line 10 and do i loop in line 16 are parallelizable. However, the most important

loop do k is not detected as parallelizable. Then insert the INDEPENDENT directive with the

NEW clause that specifies the arrays u and flux, and the do variables of the inner do loops j,

i, and m immediately before the do k loop as shown in Figure 57.

Figure 57 INDEPENDENT Directive with Array NEW Variables

Compiling the code with the HPF compiler option –Minfo displays the following diagnostic

messages, which show the do k loop in line 8 is parallelized as an INDEPENDENT loop.

subroutine rhs(f, u, n1, n2, n3)

common /com/c1, c2, q

dimension flux(2,n1), u(2,n1)

dimension f(2, n1, n2, n3)

!HPF$ DISTRIBUTE F(*,*,*,BLOCK)

!HPF$ INDEPENDENT, NEW(u, flux, j, i, m)

 do k=2, n3-1

do j=2,n2-1

do i=1,n1

do m=1,2

u(m, i) = c1 –c2

enddo

flux(1, i) = q * u(1,i)

flux(2, i) = q * u(2,i)

enddo

do i=2, n1-1

f(1,i,j,k) = f(1,i,j,k) * (flux(1,i+1) – flux(1, i-1))

f(2,i,j,k) = f(2,i,j,k) * (flux(2,i+1) – flux(2, i-1))

 enddo

 enddo

 enddo

Chapter4 HPF Programming

- 70 -

 8, Independent loop parallelized

11, Independent loo

17, Independent loop

When INDEPENDENT loops are nested, the INDEPENDENT loop to which a NEW clause must

be specified is the innermost one that defines the NEW variable. In the example Figure 58,

the NEW clause that specifies the work variable s, which is defined in the loops do i and do j,

must be specified in the INDEPENDENT directive to the innermost do j loop.

Figure 58 NEW Variable Defined in Multiple INDEPENDENT Loops

When all scalar variables defined in loops in a program are NEW variables except for reduction

variables, which are explained in the next subsection, explicit NEW clauses for the scalar

variables can be omitted using the HPF compiler option –Mscalarnew. Also, when all arrays

that are not mapped and defined in loops in a program are NEW variables except for reduction

variables, explicit NEW clauses for the arrays can be omitted using the HPF compiler option

–Mnomapnew.

In the code Figure 57, since all scalar variables k, i, j, and m, and all non-mapped arrays u

and flux that are defined in the loop nest, are NEW variables, the HPF compiler treats these

variables as NEW variables by inserting the INDEPENDENT directive without the NEW clause

and compiling the code with the HPF compiler options –Mscalarnew and –Mnomapnew.

!HPF$ INDEPENDENT, NEW(j)

do i=1, n

!HPF$ INDEPENDENT, NEW(s)

 do j=1,n

 s = sqrt(a(i,j)**2 + b(i,j)**2)

 c(i,j) = s

 enddo

 enddo

Chapter4 HPF Programming

- 71 -

4.2.3 REDUCTION Clause

The loop in Figure 59 executes the same operation (addition) repeatedly and accumulates

the result value on a variable (r, in this case). The INDEPENDENT directive cannot be specified

to this loop because of the loop-carried dependency on the variable r. However, since addition

is associative and commutative, abstract processors can execute the loop almost in parallel

by storing the sum of the elements of the array a that are mapped on each abstract processor

in a temporal area allocated on itself (local reduction) and then adding up the values of the

temporal areas on all abstract processors while transferring them (global reduction). This

kind of computation is called reduction computation and the result variable of the reduction

computation (r, in this case) is called a reduction variable.

Figure 59 Reduction Loop

The INDEPENDENT directive with the REDUCTION clause that specifies the reduction

variables as shown in Figure 60 can be specified to loops that perform reduction computation.

It is not correct to specify reduction variables in a NEW clause, since the values of reduction

variables have to be accumulated across iterations of loops.

 real a(10)

!HPF$ PROCESSORS p(2)

!HPF$ DISTRIBUTE a(BLOCK) ONTO p

 r=0

 do i=1,10

 r = r + a(i)

 enddo

Chapter4 HPF Programming

- 72 -

Figure 60 INDEPENDENT Directive with REDUCTION Clause

When INDEPENDENT loops that perform reduction computation are nested, the REDUCTION

clause must be specified to the outermost INDEPENDENT loop. For example, since both the

loops do i and do j perform reduction computation on the variable s in the code Figure 61,

the REDUCTION clause for the variable s must be specified in the INDEPENDENT directive to

the outermost INDEPENDENT loop do i.

Figure 61 Where to Specify the REDUCTION Clause

4.2.4 Parallelization of Loops with Reference to Procedures

Loops that contain references to procedures as shown in Figure 62 cannot be parallelized

automatically since it is not possible to analyze at compilation time whether the loops are

 real a(10)

!HPF$ PROCESSORS p(2)

!HPF$ DISTRIBUTE a(BLOCK) ONTO p

 r=0

!HPF$ INDEPENDENT, REDUCTION(r)

 do i=1,10

 r = r + A(I)

 enddo

!HPF$ INDEPENDENT, NEW(j),REDUCTION(s)

 do i=1,n

!HPF$ INDEPENDENT

 do j=1,n

 s = s + a(i,j)

 enddo

 enddo

Chapter4 HPF Programming

- 73 -

parallelizable.

Figure 62 Loop with a Reference to a Procedure

Each iteration of the loop do i in Figure 62 invokes the subroutine sub and a column of the

two-dimensional array a passed as the argument is defined in it. Since variables except for

the argument are not defined and no I/O is performed, the loop is actually parallelizable. In

such cases, the EXTRINSIC procedure feature that enables HPF procedures to invoke Fortran

procedures can be used to parallelize the loop. With the EXTRINSIC procedure feature, HPF

procedures can invoke procedures that are not HPF or global model by declaring an

EXTRINSIC prefix as shown in Figure 63 at the beginning of the PROGRAM statement,

FUNCTION statement, SUBROUTINE statement, or MODULE statement. Local model and

serial model are available in addition to global model. The local model procedures are

executed by each abstract processer independently like MPI procedures. The serial model

procedures are executed only by one abstract processor.

 integer a(100,100)

!HPF$ DISTRIBUTE A(*,BLOCK)

 :

 do i=1,100

 call sub(a(:,i))

 enddo

 :

 end

 subroutine sub(a)

 integer a(100)

 do j=1,100

 a(j) = j

 enddo

 end

Chapter4 HPF Programming

- 74 -

Figure 63 EXTRINSIC Prefix

The following description as shown in Figure 64 makes it possible to parallelize the loop.

 Declare the procedure referenced in the loop as EXTRINSIC(Fortran_LOCAL) in the

explicit interface (interface block).

 Declare EXTRINSIC(Fortran_LOCAL) at the beginning of the SUBROUTINE statement of

the referenced procedure.

 Specify the INDEPENDENT directive to the loop.

The HPF compiler parallelizes the loop assigning each iteration of the loop to the abstract

processor that has the elements of the array a passed as the argument in the iteration.

Note that the HPF compiler parallelizes the loop assuming that data transfers are not needed

in local model procedures. Therefore, when data transfers are needed for global variables or

dummy arguments in the local model procedures, the behavior of the program is not

guaranteed.

EXTRINSIC (<lang> , <model>)

or

EXTRINSIC (<extrinsic-kind-keyword>)

 <lang> is ”HPF” or “Fortran”

 <model> is ”GLOBAL”, “LOCAL”, or ”SERIAL”. ”GLOBAL”, “LOCAL”,

and ”SERIAL” indicate global model, local model, and serial model, respectively.

 <extrinsic-kind-keyward> is HPF, HPF_LOCAL, HPF_SERIAL, Fortran_LOCAL, or

Fortran_SERIAL, which indicate global model HPF, local model HPF, serial model

HPF, local model Fortran, and serial model Fortran, respectively.

Chapter4 HPF Programming

- 75 -

Figure 64 Fortran_LOCAL Procedure Invoked in the INDEPENDENT Loop

4.2.5 ON-HOME-LOCAL Directive Construct and Directive

When the HPF compiler parallelizes a loop nest, it selects one mapped array as the base array

for the parallelization and assigns iterations of the loops so each abstract processor accesses

only the base array elements mapped on itself. The base array is called a home array. When

the home array selected by the HPF compiler is not appropriate, unnecessary data transfers

can occur. In the example Figure 65, since the do variable i corresponds to the non-mapped

axis of the array a, all abstract processors execute the whole loop redundantly. On the other

hand, the subscript along the mapped axis of the array a is always one. Since the array

 integer a(100,100)

!HPF$ DISTRIBUTE A(*,BLOCK)

 interface

 EXTRINSIC(Fortran_LOCAL) subroutine sub(a)

 integer a(100)

 intent(out) :: a

 end subroutine

 end interface

 :

!HPF$ INDEPENDENT

 do i=1,100

 call sub(a(:,i))

 enddo

 :

 end

 EXTRINSIC(Fortran_LOCAL) subroutine sub(a)

 integer a(100)

 intent(out) :: a

 do i=1,100

 a(i) = i

 enddo

 end

Chapter4 HPF Programming

- 76 -

elements accessed in the loop are mapped only on the first abstract processor, data transfers

are needed.

Figure 65 Boundary Processing Loop

In such cases, it is possible to improve the execution performance by inserting the ON-HOME-

LOCAL directive construct as shown in Figure 66, which specifies that no data transfers are

needed when the whole loop is executed only by the abstract processor onto which the array

section a(:,1) is mapped.

Figure 66 ON-HOME-LOCAL Directive Construct That Encloses the Whole Loop

The example Figure 67 shows the loop nest that performs a matrix-vector product for a

sparse matrix a in the Compressed Row Storage (CRS) format. The arrays are distributed as

shown in Figure 68 so that no data transfers are needed when four abstract processors

execute the loop nest. However, it is currently difficult for the HPF compiler to judge that no

data transfers are needed when arrays distributed with the BLOCK distribution and those with

the GEN_BLOCK distribution are accessed in the same loop nest.

 real a(100,100)

!HPF$ DISTRIBUTE a(*,BLOCK)

 :

 do i=1,99

 a(i,1) = a(i,1) + a(i+1,1)

 enddo

 real a(100,100)

!HPF$ DISTRIBUTE a(*,BLOCK)

 :

!HPF$ ON HOME(a(:,1)), LOCAL BEGIN

 do i=1,99

 a(i,1) = a(i,1) + a(i+1,1)

 enddo

!HPF$ END ON

Chapter4 HPF Programming

- 77 -

Figure 67 Matrix-Vector Product in CRS Format

Figure 68 Mapping of Arrays in CRS Format

Then it is possible to parallelize the loop nest efficiently by specifying that data transfers for

the arrays a and cidx are not needed when each iteration of the loop do i is assigned to the

abstract processor that has the home array r(i) as shown in Figure 69.

 real a(5), v(4), r(4)

 integer rst(5), cidx(5)

 integer, parameter :: m(4) = (/1,1,2,1/)

!HPF$ PROCESSORS p(4)

!HPF$ DISTRIBUTE r(BLOCK) ONTO p

!HPF$ DISTRIBUTE (GEN_BLOCK(m)) ONTO p :: a, cidx

 :

 do i=1,4

 r(i) = 0.0

 do j = rst(i), rst(i+1)-1

 r(i) = r(i) + a(j) * v(cidx(j))

 enddo

 enddo

Chapter4 HPF Programming

- 78 -

Figure 69 ON-HOME-LOCAL Directive Construct to a Matrix-Vector Product

When the target of the ON-HOME-LOCAL directive construct is one executable statement or

construct, the ON-HOME-LOCAL directive, in which keywords BEGIN and END ON are omitted,

can also be used. The syntax of the ON-HOME-LOCAL directive construct and ON-HOME-

LOCAL directive is as follows:

 real a(5), v(4), r(4)

 integer rst(5), cidx(5)

 integer, parameter :: m(4) = (/1,1,2,1/)

!HPF$ PROCESSORS p(4)

!HPF$ DISTRIBUTE r(BLOCK) ONTO p

!HPF$ DISTRIBUTE (GEN_BLOCK(m)) ONTO p :: a, cidx

 :

 do i=1,4

!HPF$ ON HOME(r(i)), LOCAL(a, cidx) BEGIN

 r(i) = 0.0

 do j = rst(i), rst(i+1)-1

 r(i) = r(i) + a(j) * v(cidx(j))

 enddo

!HPF$ END ON

 enddo

Chapter4 HPF Programming

- 79 -

Figure 70 ON-HOME-LOCAL Directive Construct and Directive

4.2.6 SHADOW Directive and REFLECT Directive

When the do i loop in Figure 71 is parallelized selecting the left hand side b(i) as the home

array, the data transfer between adjacent abstract processors is necessary because the

computation references the array elements mapped on the adjacent abstract processors as

shown in Figure 72.

Figure 71 Loop with References to Adjacent Elements

 real a(12), b(12)

!HPF$ PROCESSORS p(4)

!HPF$ DISTRIBUTE (*,BLOCK) ONTO p :: a, b

 :

 do i=2,11

 b(i) = a(i-1) + a(i) + a(i+1)

 enddo

ON-HOME-LOCAL directive construct

!HPF$ ON HOME(<array section>) [, LOCAL[(v,…)]] BEGIN

 Sequence of <executable statement or construct>

!HPF$ END ON

 The abstract processors onto which <array section> is mapped execute the

sequence of <executable statement or construct>.

 v indicates the name of a variable for which data transfers are not needed. When

(v,…) is omitted, data transfers are not needed for all variables that appear in the

sequence of <executable statement or construct>.

ON-HOME-LOCAL directive

!HPF$ ON HOME(<array section>) [, LOCAL[(v,…)]]

 The abstract processors onto which <array section> is mapped execute the

immediately following executable statement or construct.

Chapter4 HPF Programming

- 80 -

Figure 72 References between Adjacent Abstract Processors

The data transfer can be performed efficiently by allocating buffer areas to store the data

received from adjacent abstract processors in advance as shown in Figure 73. The loop itself

can also be executed efficiently without data transfers during the execution by referencing

the values of the buffer areas as shown in Figure 74. The buffer areas are called the shadow

area, and the data transfers between adjacent abstract processors are called the shift transfer.

Figure 73 Shift Transfer

Figure 74 Parallel Execution Referencing the Shadow Area

The HPF compiler allocates the shadow area with width four along the axes distributed with

the BLOCK distribution or GEN_BLOCK distribution by default and generates the shift transfer

automatically.

However, it is not possible to generate the shift transfer in the example Figure 75, because it

is unknown at compilation time whether the shadow area includes the adjacent reference of

width n.

Chapter4 HPF Programming

- 81 -

Figure 75 Width of Adjacent References are Determined at Runtime

If a programmer knows that the value of the variable n is -1 or 1, the HPF directives as shown

in the example Figure 76 make it possible to parallelize the loop only with the efficient shift

transfer.

1. Declare the shadow area explicitly with the SHADOW directive.

2. Perform the shift transfer before the loop with the REFLECT directive.

3. Specify with the ON-HOME-LOCAL directive that the loop can be executed without data

transfers by selecting the array reference b(i) as the home array.

 subroutine sub(a,b,n)

real a(100), b(100)

!HPF$ PROCESSORS p(4)

!HPF$ DISTRIBUTE (BLOCK) ONTO p :: a, b

 :

 do i=2,99

 b(i) = a(i) + a(i+n)

 enddo

Chapter4 HPF Programming

- 82 -

Figure 76 SHADOW Directive, REFLECT Directive, and ON-HOME-LOCAL Directive

The syntax of the SHADOW directive is shown in Figure 77. Note that when a dummy

argument appears in the SHADOW directive, the same SHADOW directive should be specified

to the corresponding actual argument. This is because when the shadow widths of a dummy

argument and the corresponding actual argument are different, copy between them occurs

to make the shadow widths match up.

Figure 77 Syntax of the SHADOW Directive

 subroutine sub(a,b,n)

real a(100), b(100)

!HPF$ PROCESSORS p(4)

!HPF$ DISTRIBUTE (BLOCK) ONTO p :: a, b

!HPF$ SHADOW (1) :: a

 :

!HPF$ REFLECT a

 do i=2,99

!HPF$ ON HOME(b(i)), LOCAL

 b(i) = a(i) + a(i+n)

 enddo

!HPF$ SHADOW a(<shadow width>,…)

 or

!HPF$ SHADOW (<shadow width>,…) :: a,…

 a indicates the name of an array

 <shadow width> is n or l : u, where n is equivalent to n : n, which indicates the

lower shadow width and upper shadow width, respectively. The shadow width must

be a constant.

Chapter4 HPF Programming

- 83 -

The syntax of the REFLECT directive is as follows:

Figure 78 Syntax of the REFLECT Directive

4.3 Extended Intrinsic Procedures

This section describes extended intrinsic procedures supported by the HPF compiler.

4.3.1 Timing Procedures

 HPF_LOCAL_WCLOCK(ATIME)

 Description.

Each abstract processor returns the value of the wall-clock time on itself without

synchronization. The values on different abstract processors are generally different.

It can be used to know the load balance for a specific computation segment.

 Class.

subroutine.

 Argument.

ATIME

must be an array of type double precision. It is an INTENT(OUT) argument. It

must appear in the DISTRIBUTE directive that specifies the BLOCK distribution

along all axes. The shape of it must be the same as that of the processor array

onto which it is distributed.

Each element of the array ATIME is assigned the current time on the

corresponding abstract processor in seconds. The values are non-negative.

!HPF$ REFLECT [(<shadow width>,…)] [::] a,…

 a indicates the name of an array, which must appear in the SHADOW directive in

the specification part of the scoping unit.

 When <shadow width>,… is specified, the shift transfer is performed only on the

specified part of the shadow area, which is called the partial REFLECT directive.

Chapter4 HPF Programming

- 84 -

 Example.

The values of t2(1) – t1(1) and t2(2) - t1(2) are the elapsed times required for

executing the loop on the abstract processors p(1) and p(2), respectively.

 HPF_WCLOCK(TIME)

 Description

It returns the wall-clock time. A representative abstract processor measures the wall-

clock time after synchronization among all abstract processors and broadcasts the

value to all abstract processors. The value is the same on all abstract processors, but

the overhead for the synchronization and broadcast is involved. Therefore, it is

suitable for measurement of relatively large computation segments.

 Class.

subroutine.

 Argument

TIME

must be a scalar variable of type double precision. It is an INTENT(OUT) argument.

The current wall-clock time is set in seconds. The value is non-negative.

double precision t1(2), t2(2)

integer a(100)

!HPF$ PROCESSORS p(2)

!HPF$ DISTRIBUTE (BLOCK) ONTO p :: t1, t2

 :

 call HPF_LOCAL_WCLOCK(t1)

 do i=1,100

 a(i) = i

 enddo

 call HPF_LOCAL_WCLOCK(t2)

Chapter4 HPF Programming

- 85 -

 Example

The value t2 – t1 indicates the elapsed time in seconds required for executing the

subroutine sub.

4.4 Clean up of Fortran Code

Fortran 95 programs can basically be compiled with the HPF compiler as they are as HPF is

an extension of Fortran 95. However, when the following old Fortran features are used, code

modifications are required.

 Multiple Variables share the same memory via EQUIVALENCE statements and COMMON

statements (storage association).

 Order of array elements is assumed (sequence association). For example, the order of

the elements of an array a with the shape (2,3) is a(1,1), a(2,1), a(1,2), a(2,2), a(1,3),

and a(2,3).

These characteristics cannot be kept in HPF since arrays are divided and parts of them are

mapped onto the distributed-memory separately. Mapped arrays are subject to the following

constraints.

 Mapped arrays cannot appear in the EQUIVALENCE statement.

 Every COMMON block variable must have the same attributes such as the shape, type,

and data mapping in all occurrences in a program in principle.

 The shapes of each actual argument and corresponding dummy argument must be the

same in principle.

double precision t1, t2

integer a(100)

 :

 call HPF_WCLOCK(t1)

 call sub()

 call HPF_WCLOCK(t2)

Chapter4 HPF Programming

- 86 -

 When an actual argument is an array element (for example, a(1,2)), the corresponding

dummy argument must not be an array (address passing. refer to Figure 79): That is,

when an actual argument is an array element, the corresponding dummy argument must

be a scalar variable.

 Assumed-size arrays, whose upper bound along the last axis is * like a(n,*), cannot be

mapped.

Figure 79 Address Passing (Not Allowed in HPF)

Before parallelizing existing Fortran programs, modify these descriptions as follows, and then

insert HPF directives.

 Delete EQUIVLAENCE statements to mapped arrays. When only part of a large array is

used, declare the array with the shape and type actually used using the features to

determine shapes of arrays at runtime such as allocatable arrays or automatic arrays.

 Declare every common block variable so that it has the same attributes including data

mapping in all occurrences in a program. It is helpful to declare each common block in

an include file or module to prevent omission or error in the declaration.

 Declare actual arguments and corresponding dummy arguments so that they have the

same shapes. The following modification can be required.

 Each address passing as shown in Figure 79 must be modified into an array section

actual argument as shown in Figure 80 to explicitly specify that an array is passed as

an actual argument.

real a(n,n)

do i=1,n

call sub(a(1,i),n)

 enddo

end

subroutine sub(a,n)

real a(n)

Chapter4 HPF Programming

- 87 -

 Assumed-size arrays as shown in Figure 81 must be modified into explicit shape

arrays as shown in Figure 82 or assumed-shape arrays.

Figure 80 Array Section Actual Argument

Figure 81 Assumed-Size Array

Figure 82 Explicit Shape Array

It can sometimes be difficult or very troublesome to parallelize existing Fortran programs

with HPF due to constrains described above. However, procedures that are not needed to

real a(n,n)

do i=1,n

call sub(a(:,i),n)

 enddo

end

subroutine sub(a,n)

real a(n)

real a(n,n)

call sub(a,n)

end

subroutine sub(a,n)

real a(n,*)

real a(n,n)

call sub(a,n)

end

subroutine sub(a,n)

real a(n,n)

Chapter4 HPF Programming

- 88 -

parallelize can be compiled with the HPF compiler without modifications using any of the

following methods.

 Procedures that do not have mapped arrays and I/O can be compiled with the HPF

compiler as they are.

 The EXTRINSIC procedure feature enables compilation of procedures as Fortran. Describe

explicit interfaces such as interface blocks to declare the EXTRINSIC prefix to specify that

Fortran procedures are referenced. Refer to subsection 4.2.4 for the EXTRINSIC feature.

 Create object files or archive files with the Fortran compiler and link HPF programs with

them with the HPF compiler. This method is also available to call existing Fortran libraries

from HPF programs.

Chapter5 Tuning and Debug

- 89 -

Chapter5 Tuning and Debug

This chapter explains how to tune and debug HPF programs.

5.1 Tuning

5.1.1 Parallelization Information List

Parallelization information lists, which display parallelization and data transfer information by

the HPF compiler, are generated with the HPF compiler option -Mlist2. The suffix of the

parallelization information lists is .lst.

Figure 84 shows an example of the parallelization information list for the HPF program in

Figure 83. The meanings of the marks in the parallelization information list is shown in Table

6.

Figure 83 Example of an HPF Program

 real :: a(100,100) = 0

!HPF$ DISTRIBUTE a(*,block)

do i=1,99

 do j=1,100

 a(j,i) = a(j,i) + a(j,i-1)

 enddo

enddo

do j = 1,100

 do i = 1,100

 x = max(x,a(i,j))

 end do

end do

write(*,*)x

Chapter5 Tuning and Debug

- 90 -

Figure 84 Example of the Parallelization Information List

Table 6 Marks in the Parallelization Information List

Mark Description

(1) Line number in the HPF source file

COMM: SFT [a] [LINO: 5 in src.hpf] Data transfer is generated by the HPF compiler. The

format is as follows:

COMM: Kind [Variable name] [LINO: Line number]

(1) real :: a(100,100) = 0

(2) !HPF$ DISTRIBUTE a(*,block)

(3)

(4) <S>------------- do i=1,99

 COMM: SFT [a] [LINO: 5 in src.hpf]

(5) <N>------------- do j=1,100

(6) | a(j,i) = a(j,i) + a(j,i-1)

(7) +-------------- enddo

(8) enddo

(9)

 COMM: RED [x] [LINO: 10 in src.hpf]

 HOME: a(:,j)

(10) <P>------------- do j = 1,100

(11) |<I>----------- do i = 1,100

(12) | x = max(x,a(i,j))

(13) | end do

(14) +-------------- end do

(15)

(16) write(*,*)x

(17) end

Chapter5 Tuning and Debug

- 91 -

, where Kind is one of the following:

RED : Reduction

SFT : Shift

CPY : Copy of an array

G/S : Gather/Scatter

SCL : Data transfer for a scalar variable

It is possible to obtain the list of data transfers by

extracting the lines that contain the mark “COMM:”

as follows, and check whether redundant data

transfers are generated.

%>grep "COMM:" src.lst

Of the data transfers above, the marks RED and

SFT are usually not problems, but elimination of the

mark CPY can improve execution performance if

possible. The marks G/S and SCL indicate very

high-overhead data transfers in many cases, and

should be eliminated by tuning the HPF program.

<S> Loop is judged as non-parallelizable. It is possible to

obtain the list of loops that are judged as non-

parallelizable by extracting lines that contain the

mark <S> as follows:

%>grep "<S>" src.lst

When a parallelizable loop is judged as non-

parallelizable, inserting an INDEPENDENT directive

can lead to the parallelization of the loop.

<N> Loop is judged as parallelizable, but not parallelized.

When no data transfer is generated for the loop, it

Chapter5 Tuning and Debug

- 92 -

is not a problem. Changing data mappings of arrays

that appear in the loop can lead to the parallelization

of the loop.

It is possible to obtain the list of loops that are

judges as parallelizable, but not parallelized by

extracting the lines that contain the mark <N> as

follows:

%>grep "<N>" src.lst

<P> Loop is parallelized by the HPF compiler.

<I> Loop is judged as parallelizable. When the loop has

reduction computation, the mark <R> is displayed

instead of the mark <I>.

HOME: a(:,j) Home array (base array for parallelization) for the

immediately following loop nest.

Detailed Parallelization information lists, which display intermediate code by the HPF compiler

in addition to parallelization and data transfer information, are generated with the HPF

compiler option –Mlist3.

Figure 85 shows an example of the detailed parallelization information list for the HPF

program in Figure 83.

Chapter5 Tuning and Debug

- 93 -

Figure 85 Example of the Detailed Parallelization Information List

Please note that parallelization information marks are not displayed for array assignment

statements.

(9)

 COMM: RED [x] [LINO: 10 in src.hpf]

 HOME: a(:,j)

(10) <P>------------- do j = 1,100

(11) |<I>----------- do i = 1,100

(12) | x = max(x,a(i,j))

(13) | end do

(14) +-------------- end do

 .

 . x$ind = x

 . j$indl = a$sd(84)

 . j$indu = a$sd(85)

 . pghpf_saved_local_mode = pghpf_local_mode

 . pghpf_local_mode = 1

 .!NEC$nosync

 .!NEC$shortloop

 . do j = j$indl, j$indu

 .!NEC$nosync

 . do i = 1, 100

 . x$ind = max(x$ind,a(i,j))

 . enddo

 . enddo

 . pghpf_local_mode = pghpf_saved_local_mode

 . call pghpf_global_maxval(x$ind,a,125_8,pghpf_type(27),a$sd,

 . +pghpf_type(26))

 .! call .reduce_maxval(x$ind,a,125_8)

 . x = x$ind

 .

Chapter5 Tuning and Debug

- 94 -

Loop optimization information by the NEC Fortran compiler is also displayed at the right of

parallelization information by the HPF compiler as shown Figure 86 by specifying the NEC

Fortran compiler option –report-format or –report-all and HPF compiler option -Mlist2 or -

Mlist3 at the same time, if the HPF compiler option –Mftn is not specified.

Figure 86 Parallelization Information List with Loop Optimization Information

The meanings of the loop optimization information marks are the same as those in the NEC

Fortran compiler format list. For example, the mark P indicates a shared-memory parallelized

loop and the mark V a vectorized loop. Moreover, the marks including I (Inline expansion)

and S (partial vectorization) are displayed at the left of the first column of source code lines.

Refer to “Fortran Compiler User’s Guide” for details.

When a loop is divided into multiple loops by the HPF compiler, and the loops are optimized

in various ways by the NEC Fortran compiler, the mark M is displayed.

5.1.2 Diagnostic Messages

Diagnostic messages are displayed with the HPF compiler option –Minfo. The diagnostic

messages you should pay attention to are as follows:

(1) real :: a(100,100) = 0

(2) !hpf$ distribute a(*,block)

(3)

(4) <S>+------------ do i=1,99

 COMM: SFT [a] [LINO: 5 in src.hpf]

(5) <N>V------------ do j=1,100

(6) | a(j,i) = a(j,i) + a(j,i-1)

(7) +-------------- enddo

(8) enddo

(9)

 COMM: RED [x] [LINO: 10 in src.hpf]

 HOME: a(:,j)

(10) <P>P------------ do j = 1,100

(11) |<I>V---------- do i = 1,100

(12) | x = max(x,a(i,j))

(13) | end do

(14) +-------------- end do

(15)

(16) write(*,*)x

(17) end

Chapter5 Tuning and Debug

- 95 -

 expensive communication

High-Overhead data transfer is generated

 Array “array name” not aligned with home array; array copied

The array “array name” is copied into a temporary area, which usually involves data

transfer, because the data mapping of it does not match that of the base array of loop

parallelization (home array).

 communication is generated: array copy

An array is copied into a temporary area, which usually involves data transfer.

5.1.3 Examples of Tuning of HPF Programs

This subsection describes typical tuning examples of HPF programs.

 Parallelization of a Loop Nest that Contains a Work Array

The loop nest in Figure 87 is not automatically parallelized because the work array tmp

is defined in multiple iterations of the loop do k.

Figure 87 Loop Nest that Contains a Work Array

 integer tmp(100),a(100,100)

!HPF$ DISTRIBUTE a(*,BLOCK)

 :

 do k = 2, nz - 1

 do j = 2, ny - 1

 do i = 1, 100

 tmp(i) = i

 enddo

 a(j,k) = tmp(i) + tmp(i+1)

 enddo

 enddo

 write(*,*)a

 end

Chapter5 Tuning and Debug

- 96 -

Inserting the INDEPENDENT directive with the NEW clause for the work array tmp as

shown in Figure 88 enables parallelization of the loop do k.

Figure 88 INDEPENDENT Directive with a NEW Clause for a Work Array

 Loop Fission

In the loop nest in Figure 89, data transfer is needed for the array a or b, because the

subscripts along the distributed axis of the left hand side of the assignment statements

are different. Data transfer for a defined array involves higher overhead than that for a

referenced array because allocation of a temporary area, copy of the value of the

corresponding array to that of the temporary, and copy back from the temporary to the

corresponding array are required.

 integer tmp(100),a(100,100)

!HPF$ DISTRIBUTE a(*,BLOCK)

 :

!HPF$ INDEPENDENT, NEW(tmp,i,j)

 do k = 2, nz - 1

 do j = 2, ny - 1

 do i = 1, 100

 tmp(i) = i

 enddo

 a(j,k) = tmp(i) + tmp(i+1)

 enddo

 enddo

 write(*,*)a

 end

Chapter5 Tuning and Debug

- 97 -

Figure 89 Subscripts along the Distributed Axis are Different.

Then, the loop fission as shown in Figure 90 to use only one subscript along the distributed

axis of the left hand side enables efficient parallelization only with the shift transfer for the

right hand side array c for the first loop nest.

Figure 90 Loop Fission

 Inhibition of Data Transfers for Boundary Processing Loops

Without HPF directives, inefficient data transfers are generated for boundary processing

 real a(10,10), b(10,10), c(10,10)

!HPF$ DISTRIBUTE (*,BLOCK) :: a, b, c

 :

 do j=1,9

 do i=1,99

 a(i+1,j) = -c(i+1,j+1)

 b(i,j+1) = c(i+1,j+1)

 enddo

enddo

 real a(10,10), b(10,10), c(10,10)

!HPF$ DISTRIBUTE (*,BLOCK) :: a, b, c

 :

 do j=1,9

 do i=1,9

 a(i+1,j) = -c(i+1,j+1)

 enddo

 enddo

 do j=1,9

 do i=1,9

 b(i,j+1) = c(i+1,j+1)

 enddo

enddo

Chapter5 Tuning and Debug

- 98 -

loops as shown in Figure 91 that access only the elements at the end of a distributed

axis of arrays, because all abstract processors take part in the execution.

Figure 91 Boundary Processing Loop

The data transfers can be inhibited by inserting the ON-HOME-LOCAL directives as

shown in Figure 92 to specify that only the abstract processers onto which the elements

at the end of the distributed axis of arrays are mapped execute the statements

Figure 92 ON-HOME-LOCAL Directive to Boundary Processing

 Loop Peeling for boundary Processing

The boundary processing under the IF construct in the loop nest as shown in Figure 93

can inhibit parallelization of the loop nest or lead to inefficient data transfers.

 double precision a(100,100)

!HPF$ PROCESSORS p(2)

!HPF$ DISTRIBUTE a(*,BLOCK) ONTO p

 do i=1,100

 a(i,1) = a(i,2)

 a(i,100) = a(i,99)

 enddo

 double precision a(100,100)

!HPF$ PROCESSORS p(2)

!HPF$ DISTRIBUTE a(*,BLOCK) ONTO p

 do i=1,100

!HPF$ ON HOME(a(:,1)), LOCAL

 a(i,1) = a(i,2)

!HPF$ ON HOME(a(:,100)), LOCAL

 a(i,100) = a(i,99)

 enddo

Chapter5 Tuning and Debug

- 99 -

Figure 93 Loop that Contains Boundary Processing

Efficient parallel execution is possible by splitting the boundary processing as a distinct

loop and inserting the ON-HOME-LOCAL directive construct to it as shown in Figure 94.

 parameter(n=100)

 real a(n,n),b(n,n)

!HPF$ DISTRIBUTE (*,BLOCK) :: a,b

 do j=1,n

 if(j.eq.n)then

 do i=1,n

 a(i,j) = 0.9

 enddo

 else

 do i=1,n

 a(i,j) = b(i,j) + b(i,j+1)

 enddo

 endif

 enddo

Chapter5 Tuning and Debug

- 100 -

Figure 94 Loop Peeling of Boundary Processing

 Subscripts in Boundary Processing

When the subscript in the distributed axis of arrays is constant as shown in Figure 95,

inefficient data transfers can occur because the subscript does not correspond to the DO

variable.

 parameter(n=100)

 real a(n,n),b(n,n)

!HPF$ DISTRIBUTE (*,BLOCK) :: a,b

 do j=1,n-1

 do i=1,n

 a(i,j) = b(i,j) + b(i,j+1)

 enddo

 enddo

 j=n

!HPF$ ON HOME(a(:,j)), NEW(i), LOCAL(a) BEGIN

 do i=1,n ! Boundary processing loop

 a(i,j) = 0.9

 enddo

!HPF$ END ON

Chapter5 Tuning and Debug

- 101 -

Figure 95 Constant Subscript in the Distributed Axis

Rewrite the subscript along the distributed axis using a linear expression of the DO

variable as shown in Figure 96.

Figure 96 Subscript Using a Linear Expression of the DO Variable

 Actual Arguments with Different Data Mappings

When a procedure is invoked with actual arguments with different data mappings as

shown in Figure 97, data transfers occur in some invocations of the procedure, which can

lead to poor performance.

 parameter(n=100)

 real a(n,n),b(n,n)

!HPF$ DISTRIBUTE (*,BLOCK) :: a,c

 do j=1,n

 if(j.eq.2)then

 do i=1,n

 a(i,1) = a(i,1) - b(i)*c(i,1)

 enddo

 endif

 enddo

!HPF$ DISTRIBUTE (*,BLOCK) :: a,c

 do j=1,n

 if(j.eq.2)then

 do i=1,n

 a(i,j-1) = a(i,j-1) - b(i)*c(i,j-1)

 enddo

 endif

 enddo

Chapter5 Tuning and Debug

- 102 -

Figure 97 Actual Arguments with Different Data Mappings

In such cases, it is possible to improve the performance by making copies of the

procedure so that the dummy arguments of each procedure have the same data

mappings as the corresponding actual arguments has as shown in Figure 98. This kind

of optimization is called procedure cloning.

Figure 98 Copies of a Procedure Corresponding to Data Mappings of the Argument

 double precision a(100,100),b(100,100)

!HPF$DISTRIBUTE a(*,BLOCK)

 call sub(a)

 call sub(b)

 end

 double precision a(100,100),b(100,100)

!HPF$DISTRIBUTE a(*,BLOCK)

 call sub1(a)

 call sub2(b)

 end

 subroutine sub1(a)

 double precision a(100,100)

!HPF$DISTRIBUTE a(*,BLOCK)

 :

 end

 subroutine sub2(b)

 double precision b(100,100)

 :

 end

Chapter5 Tuning and Debug

- 103 -

 Data Mapping of Dummy Arguments

In the example Figure 99, the data transfer to match the data mapping of the actual

argument with that of the corresponding dummy argument occurs when the subroutine

sub is invoked.

Figure 99 Data Mappings of the Actual Argument and Dummy Argument Differ

It is possible to check whether data transfers at invocations of procedures occur by

executing with the HPF runtime option -hpf –commmsg, as the warning message like the

following is output for data transfers across procedure boundaries.

"a": Communication occurs at procedure boundary PROG=sub ELN=7 Called from main

ELN=4

Execution performance is improved by matching the data mappings of dummy arguments

with those of the corresponding actual arguments as shown in Figure 100.

 program main

 real a(100,100)

!HPF$ DISTRIBUTE a(*,BLOCK)

 call sub(a)

 end

 subroutine sub(a)

 real a(100,100) ! Not Mapped

Chapter5 Tuning and Debug

- 104 -

Figure 100 Explicit Data Mapping of the Dummy Argument

 I/O

Element by element I/O as shown in Figure 101 is not efficient.

Figure 101 Element by Element I/O

Read or write whole arrays using unformatted I/O as shown in Figure 102 especially

when sizes of arrays read or written are large.

Figure 102 I/O of Whole Arrays

 Nesting Order of Loops that perform reduction computation

The do k loop in Figure 103 performs reduction computation on the array a.

 program main

 real a(100,100)

!HPF$ DISTRIBUTE a(*,BLOCK)

 call sub(a)

 end

 subroutine sub(a)

 real a(100,100)

!HPF$ DISTRIBUTE a(*,BLOCK)

write(13,*) (a(i), b(i), i=1, n)

write(13,*) a, b

Chapter5 Tuning and Debug

- 105 -

Figure 103 Loop Nest that Performs Reduction Computation

When you use the shared-memory parallelization by the NEC Fortran compiler with the

compiler option –mparallel in addition to the distributed-memory parallelization by the

HPF compiler, the outermost loop should be the perfectly parallel loop without reduction

dependencies as shown in Figure 104 for efficient shared-memory parallelization. In this

case, the HPF compiler distributed-memory-parallelizes the do k loop that corresponds

to the distributed axis of the array w, and the NEC Fortran compiler shared-memory-

parallelizes the outermost do j loop.

Figure 104 The Outermost Loop Should be Perfectly Parallelizable

 double precision w(100,100,100),a(100,100)

!HPF$ DISTRIBUTE w(*,*,block)

 do k=1,100

 do j=1,100

 do i=1,100

 a(i,j) = a(i,j) + w(i,j,k)

 enddo

 enddo

 enddo

 double precision w(100,100,100),a(100,100)

!hpf$ DISTRIBUTE w(*,*,BLOCK)

 do j=1,100

 do k=1,100

 do i=1,100

 a(i,j) = a(i,j) + w(i,j,k)

 enddo

 enddo

 enddo

Chapter5 Tuning and Debug

- 106 -

5.2 An Easy and Simple Way of Developing HPF Programs

The HPF compiler option –Mautodist makes it possible to compile serial Fortran programs as

HPF programs in which all arrays are distributed along the last axis with the BLOCK

distribution. Also, the suboptions =all[:b] and =rank?[:b] enable more detailed specification

of data mappings of arrays. The HPF compiler option –Mlist2 generates the parallelization

information lists for the HPF programs in which the data mappings are specified and you can

check whether each loop is parallelized and where and what data transfers are generated.

This section explains how to parallelize the Fortran program “sample.F” shown in Figure 105,

Figure 106, and Figure 107 with HPF using these HPF compiler options.

Figure 105 Sample Program: Module

 module param

 parameter(n=1023,maxiter=10)

end module

Chapter5 Tuning and Debug

- 107 -

Figure 106 Sample Program: Main Program

 program sample
 use param
 double precision a(n,n),b(n,n),c(n,n),sum,ap

integer idxx(n),idxy(n),ix,iy,i,j,iter
data ap/0.0d0/

do i=1,n

 idxx(i) = n - i + 1
 idxy(i) = n - i + 1
 enddo
 do j=2,n-1
 do i=1,n
 b(i,j) = 1.0d0
 c(i,j) = 1.0d0
 enddo
 enddo
 call bound(b)
 call bound(c)

 do iter=1,maxiter
! main loop
 do j=2,n-1
 do i=2,n-1
 ix = idxx(i)
 iy = idxy(j)
 a(i,j)=(b(i,j)+b(i-1,j)+b(i+1,j) &
 & +b(i,j-1)+b(i,j+1))*0.2d0*c(ix,iy)+ap
 enddo
 enddo
 do i=1,n
 a(1,i) = a(2,i)
 a(n,i) = a(n-1,i)
 enddo
 call bound(a)
 do j=1,n
 do i=1,n
 ix = idxx(i)
 b(ix,j)=a(i,j)*c(i,j)
 ap = ap + a(i,j)
 enddo
 enddo
 enddo

 write(*,*)ap
 end

Chapter5 Tuning and Debug

- 108 -

Figure 107 Sample Program: Subroutine Bound

First of all, compile the program with the HPF compiler options -Mautodist and –Mlist. Then

the parallelization information list “sample.lst” is generated for the HPF program in which all

the arrays are distributed along the last axis with the BLOCK distribution.

Figure 108 shows the parallelization information list for the main program. Focusing on the

mark “COMM:”, which indicates data transfer is generated, you can find that a lot of data

transfers are generated for lines 26 and 40 and the program is inefficiently parallelized. You

must not execute the program as it is because execution performance of an inefficient

distributed-memory parallel program can be hundreds or thousands times slower than the

original serial program. The following describes how to improve the program.

 subroutine bound(dummy)

 use param

 double precision dummy(n,n)

 do i=1,n

 dummy(i,1) = dummy(i,2)

 dummy(i,n) = dummy(i,n-1)

 enddo

 end

Chapter5 Tuning and Debug

- 109 -

Figure 108 Parallelization Information List: Main Program

(11) <I>------------- do i=1,n
(12) idxx(i) = n - i + 1
(13) idxy(i) = n - i + 1
(14) enddo
(15) <I>------------- do j=2,n-1
(16) <I>------------- do i=1,n
(17) b(i,j) = 1.0d0
(18) c(i,j) = 1.0d0
(19) enddo
(20) enddo
(21) call bound(b)
(22) call bound(c)
(23)
(24) <S>------------- do iter=1,maxiter
(25) ! main loop
 COMM: SFT [b] [LINO: 26 in sample.F]
 COMM: CPY [idxx] [LINO: 26 in sample.F]
 COMM: G/S [c] [LINO: 26 in sample.F]
 HOME: idxy(j)
(26) <P>------------- do j=2,n-1
(27) |<I>----------- do i=2,n-1
(28) | ix = idxx(i)
(29) | iy = idxy(j)
(30) | a(i,j)=(b(i,j)+b(i-1,j)+b(i+1,j)
(31) | & +b(i,j-1)+b(i,j+1))*0.2d0*c(ix,iy)+ap
(32) | enddo
(33) +-------------- enddo
 HOME: a(:,i)
(34) <P>------------- do i=1,n
(35) | a(1,i) = a(2,i)
(36) | a(n,i) = a(n-1,i)
(37) +-------------- enddo
(38) call bound(a)
(39) <S>------------- do j=1,n
 COMM: CPY [idxx] [LINO: 40 in sample.F]
 COMM: CPY [a] [LINO: 40 in sample.F]
 COMM: SCL [c] [LINO: 40 in sample.F]
 COMM: SCL [a] [LINO: 40 in sample.F]
(40) <S>------------- do i=1,n
 COMM: RED [ap] [LINO: 41 in sample.F]
(41) ix = idxx(i)
(42) b(ix,j)=a(i,j)*c(i,j)
(43) ap = ap + a(i,j)
(44) enddo
(45) enddo
(46) enddo
(47)
(48) write(*,*)ap
(49) end

Chapter5 Tuning and Debug

- 110 -

Figure 109 shows the data transfers for line 26, in which the marks “HOME: idxy(j)” and

“<P>” indicate that the do j loop is parallelized based on the home array idxy(j), which is

distributed along the last axis. (The do i loop in line 27 is not parallelized though the HPF

compiler has judged it as parallelizable as the mark “<I>” shows.)

Figure 109 Data Transfers for Line 26

Of the three data transfers, the first one marked with “COMM: SFT [b]” is relatively efficient

shift transfer, which is usually not a problem. The second one marked with “COMM: CPY

[idxx]” is generated because the array idxx, which is distributed along the last axis, is

accessed with the subscript i (idxx(i)), which does not correspond to the parallelized loop do

j. Insert the DISTRIBUTE directive not to distribute the array idxx as shown in Figure 110

because the axis which is accessed with the subscript that does not use a DO variable of a

parallelized do loop should not be distributed.

Figure 110 DISTRIBUTE Directive Not to Distribute the Rank One Array IDXX

The third one marked with ”COMM: G/S [c]” is generated because the array c, which is

distributed along the last axis, is accessed with indirect subscripts ix and iy (c(ix,iy)) in the

 COMM: SFT [b] [LINO: 26 in sample.F]

 COMM: CPY [idxx] [LINO: 26 in sample.F]

 COMM: G/S [c] [LINO: 26 in sample.F]

 HOME: idxy(j)

(26) <P>------------- do j=2,n-1

(27) |<I>----------- do i=2,n-1

(28) | ix = idxx(i)

(29) | iy = idxy(j)

(30) | a(i,j)=(b(i,j)+b(i-1,j)+b(i+1,j)

(31) | & +b(i,j-1)+b(i,j+1))*0.2d0*c(ix,iy)+ap

!HPF$ DISTRIBUTE (*) :: idxx

Chapter5 Tuning and Debug

- 111 -

parallelized loop do j. Insert the DISTRIBUTE directive not to distribute the array c as shown

in Figure 111 because the subscripts of the array c do not use the DO variable of the

parallelized loop do j.

Figure 111 DISTRIBUTE Directive Not to Distribute the Rank Two Array C

Figure 112 shows the data transfers for line 40, which are generated between the loops do j

and do i, which are not parallelized as the mark “<S>” shows.

Figure 112 Data Transfers for Line 40

The loop do j, which performs the reduction computation (sum) on the scalar variable ap, is

actually parallelizable, but the HPF compiler cannot judge it as parallelizable automatically.

Therefore, insert the INDEPENDENT directive with the REDUCTION clause for the variable ap

as shown in Figure 113. The NEW clause for the work variable ix and DO variable for the

inner do loop i should also be specified.

!HPF$ DISTRIBUTE (*,*) :: c

(39) <S>------------- do j=1,n

 COMM: CPY [idxx] [LINO: 40 in sample.F]

 COMM: CPY [a] [LINO: 40 in sample.F]

 COMM: SCL [c] [LINO: 40 in sample.F]

 COMM: SCL [a] [LINO: 40 in sample.F]

(40) <S>------------- do i=1,n

 COMM: RED [ap] [LINO: 41 in sample.F]

(41) ix = idxx(i)

(42) b(ix,j)=a(i,j)*c(i,j)

(43) ap = ap + a(i,j)

Chapter5 Tuning and Debug

- 112 -

Figure 113 INDEPENDENT Directive with a REDUCTION Clause

At this point, compile the program with the HPF compiler options –Mautodist and –Mlist2

again. Figure 114 shows the parallelization information list “sample.lst” for the main program.

You can find that the main loop nests in the program are parallelized as the mark “<P>”

shows only with efficient shift transfer marked with “COMM: SFT [b]” and reduction transfer

“COMM: RED [ap]”.

!HPF$ INDEPENDENT, NEW(ix,i), REDUCTION(ap)

 do j=1,n

 do i=1,n

 ix = idxx(i)

 b(ix,j)=a(i,j)*c(i,j)

 ap = ap + a(i,j)

 enddo

 enddo

Chapter5 Tuning and Debug

- 113 -

Figure 114 Parallelization Information List after Insertion of HPF Directives

(10) !HPF$ DISTRIBUTE (*) :: idxx
(11) !HPF$ DISTRIBUTE (*,*) :: c
(12)
(13) <I>------------- do i=1,n
(14) idxx(i) = n - i + 1
(15) idxy(i) = n - i + 1
(16) enddo
(17) <I>------------- do j=2,n-1
(18) <I>------------- do i=1,n
(19) b(i,j) = 1.0d0
(20) c(i,j) = 1.0d0
(21) enddo
(22) enddo
(23) call bound(b)
(24) call bound(c)
(25)
(26) <S>------------- do iter=1,maxiter
(27) ! main loop
 COMM: SFT [b] [LINO: 28 in sample.F]
 HOME: idxy(j)
(28) <P>------------- do j=2,n-1
(29) |<I>----------- do i=2,n-1
(30) | ix = idxx(i)
(31) | iy = idxy(j)
(32) | a(i,j)=(b(i,j)+b(i-1,j)+b(i+1,j)
(33) | & +b(i,j-1)+b(i,j+1))*0.2d0*c(ix,iy)+ap
(34) | enddo
(35) +-------------- enddo
 HOME: a(:,i)
(36) <P>------------- do i=1,n
(37) | a(1,i) = a(2,i)
(38) | a(n,i) = a(n-1,i)
(39) +-------------- enddo
(40) call bound(a)
(41) !HPF$ INDEPENDENT, NEW(i,ix), REDUCTION(ap)
 COMM: RED [ap] [LINO: 42 in sample.F]
 HOME: b(:,j)
(42) <P>------------- do j=1,n
(43) |<S>----------- do i=1,n
(44) | ix = idxx(i)
(45) | b(ix,j)=a(i,j)*c(i,j)
(46) | ap = ap + a(i,j)
(47) | enddo
(48) +-------------- enddo
(49) enddo
(50)
(51) write(*,*)ap
(52) end

Chapter5 Tuning and Debug

- 114 -

Then check data transfers at procedure invocations, which are not displayed in the

parallelization information list. The actual array arguments b, c, and a are passed to the

procedure bound, which is referenced three times in the main program. The arrays a and b

are distributed along the last axis with the HPF compiler option –Mautodist, whereas the array

c is not distributed because of the explicit DISTRIBUTE directive. Therefore, data transfer

occurs in any of the invocations of the procedure bound. To prevent the data transfers at

procedure invocations, copy the procedure as shown in Figure 115 (procedure cloning) so

that the actual arguments and corresponding dummy arguments always have the same data

mapping.

Figure 115 Copy of a Procedure (Procedure Cloning)

Then replace the reference of the procedure bound that has the non-mapped actual argument

with that of the copied procedure bound_nodist.

 subroutine bound(dummy)

 use param

 double precision dummy(n,n) ! Distribute with the option –Mautodist

 do i=1,n

 dummy(i,1) = dummy(i,2)

 dummy(i,n) = dummy(i,n-1)

 enddo

 end

 subroutine bound_nodist(dummy)

 use param

 double precision dummy(n,n)

!HPF$ DISTRIBUTE (*,*) :: dummy ! Not distribute

 do i=1,n

 dummy(i,1) = dummy(i,2)

 dummy(i,n) = dummy(i,n-1)

 enddo

 end

Chapter5 Tuning and Debug

- 115 -

 ↓

At this point, compile the program with the HPF compiler options –Mautodist and –Mlist2.

Figure 116 and Figure 117 show the parallelization information list for the procedure bound

and bound_nodist, respectively.

Figure 116 Parallelization Information List: Subroutine Bound

(54) subroutine bound(dummy)

(55) use param

(56) double precision dummy(n,n)

COMM: SFT [dummy] [LINO: 57 in sample.F]

COMM: SFT [dummy] [LINO: 57 in sample.F]

(57) <N>------------- do i=1,n

(58) | dummy(i,1) = dummy(i,2)

(59) | dummy(i,n) = dummy(i,n-1)

(60) +-------------- enddo

(61) end

call bound(c)

call bound_nobound(c)

Chapter5 Tuning and Debug

- 116 -

Figure 117 Parallelization Information List: Subroutine Bound_nodist

The parallelization will not be inefficient as it is because data transfers generated for these

procedures are only efficient shift transfers for line 57 of the subroutine bound. However,

these data transfers can be eliminated by inserting the ON-HOME-LOCAL directives as shown

in Figure 118 so that only abstract processors onto which the elements at both ends of the

array dummy are mapped execute the assignment statements because the loop do i performs

the boundary processing along the second axis of the array dummy, which is distributed with

the HPF compiler option -Mautodist.

Figure 118 ON-HOME-LOCAL Directives to Boundary Processing

Finally, the HPF program “sample.hpf.src” is generated by compiling the program with the

(62) subroutine bound_nodist(dummy)

(63) use param

(64) double precision dummy(n,n)

(65) !HPF$ DISTRIBUTE (*,*) :: dummy

(66) <N>------------- do i=1,n

(67) | dummy(i,1) = dummy(i,2)

(68) | dummy(i,n) = dummy(i,n-1)

(69) +-------------- enddo

(70) end

 subroutine bound(dummy)

 use param

 double precision dummy(n,n) ! Distribute with the option -Mautodist

 do i=1,n

!HPF$ ON HOME(dummy(:,1)), LOCAL

 dummy(i,1) = dummy(i,2)

!HPF$ ON HOME(dummy(:,n)), LOCAL

 dummy(i,n) = dummy(i,n-1)

 enddo

 end

Chapter5 Tuning and Debug

- 117 -

HPF compiler options -Mautodist and –Mhpfout.

5.3 Debug

This section describes bugs that frequently appear in HPF programs and how to detect and

fix them.

It is possible to execute HPF programs as serial Fortran programs by compiling them using

the NEC Fortran compiler. Therefore, you should confirm that the programs run without

problems before executing them as HPF programs.

The following subsections describe possible causes of problems when HPF programs do not

run though they run as serial Fortran programs.

5.3.1 Inconsistency between Actual and Dummy Arguments

The shapes and types of actual arguments and corresponding dummy arguments must be

the same in principle in HPF. Therefore the following descriptions that often appear in old

FORTRAN programs are not allowed.

 Array Element Actual Arguments Associated with Dummy Array Arguments

Figure 119 Array Element Actual Arguments and Dummy Array Arguments

The arguments as shown in Figure 119 cause runtime errors with the following error

messages and abnormal termination of the programs.

 real a(100,100),b(100,100)

 do i=1,100

 call sub(a(1,i),b(1,i)) ! Array element actual arguments

 enddo

 end

 subroutine sub(a,b)

 real a(100),b(:) ! Dummy array arguments

Chapter5 Tuning and Debug

- 118 -

 When a dummy argument is not an assumed-shape array

"a": Nonsequential dummy array is associated with array element or

scalar actual. PROG=sub ELN=8

 When a dummy argument is an assumed-shape array.

"b": Assumed-shape dummy array is associated with array element or

scalar actual. PROG=sub ELN=8

When you want to pass part of arrays as actual arguments, use array sections as shown

in Figure 120.

Figure 120 Array Section Actual Argument

 Mismatch in Shapes of Actual Arguments and Corresponding Dummy Arguments

The shape of an actual argument must be the same as that of the corresponding dummy

argument in HPF.

 real(10) a(100,100),b(100,100)

 do i=1,100

 call sub(a(:,i),b(:,i)) ! Array section actual arguments

 enddo

 end

 subroutine sub(a,b)

 real a(100),b(:)

Chapter5 Tuning and Debug

- 119 -

Figure 121 Shapes of Actual Arguments and Dummy Arguments Differ

The arguments as shown in Figure 121 cause runtime errors with the following error

messages and abnormal termination of the programs.

 When ranks of actual arguments and corresponding dummy arguments differ

"a": Dummy argument rank differs from actual. PROG=sub ELN=7

 When extents along an axis differ between actual arguments and corresponding

dummy arguments

"b": Dummy array shape differs from actual in dim 1. PROG=sub ELN=7

When you want to determine sizes of arrays at runtime, use allocatable arrays as shown

in Figure 122.

Figure 122 Allocatable Array

Automatic arrays as shown in Figure 123 are also useful for data used within a procedure.

 real a(10000),b(10000)

 n = 100

 call sub(a,b,n)

 end

 subroutine sub(a,b,n)

 real a(n,n),b(n)

 real, allocatable :: a(:,:) ! Allocatable array

 n = 100

 allocate(a(n,n))

Chapter5 Tuning and Debug

- 120 -

Figure 123 Automatic Array

When you want to determine sizes of arrays declared in a procedure at the first

invocation and use the data areas thereafter, declare allocatable arrays with the SAVE

attribute as shown in Figure 124 and allocate them at the first invocation.

Figure 124 Allocation at the First Invocation

5.3.2 Inconsistency in Common Variables

The number of variables, and type, shape, and data mapping of each variable in every

common block must be identical in an HPF program in principle.

The following descriptions are not allowed.

 The number of variables in a common block differs across procedures

 subroutine sub(n)

 real :: a(n,n) ! Automatic array

!HPF$ DISTRIBUTE (*,BLOCK) :: a

 subroutine sub(n)

 integer :: iflag = 0

 real, save, allocatable :: a(:,:) ! Allocatalbe array witht the SAVE attribute

!HPF$ DISTRIBUTE a(*,BLOCK)

 if(iflag.eq.0)then

 allocate(a(n,n))

 iflag = 1

 endif

Chapter5 Tuning and Debug

- 121 -

Figure 125 The Number of Common Block Variables Differs

 Data Mappings of Common Block Variables Differ across Procedures

Figure 126 Data Mapping of a Common Block Variable Differs

It is possible to detect these errors at runtime by compiling HPF programs with the HPF

compiler option –Mcommonchk. When inconsistencies in common blocks in an HPF

program are detected, the following error messages are output and the program

terminates abnormally.

 Inconsistency in the number of common block variables

Inconsistency detected in the number of components of common block

between sub1 and sub2 : /com/ PROG=sub2

 Inconsistency in data mappings of common block variables

Inconsistency detected in the number of explicitly mapped arrays of

common block between sub1 and sub2 : /com/ PROG=sub2

 subroutine sub1()

 common /com/a(100,100),b(100,100)

!HPF$ DISTRIBUTE (*, BLOCK) :: a,b

 :

 end

 subroutine sub2()

 common /com/a(100,100) ! Array b is not declared.

!HPF$ DISTRIBUTE (*,BLOCK) :: a

 subroutine sub1()

 common /com/a(100,100)

!HPF$ DISTRIBUTE (*,BLOCK) :: a

 :

 end

 subroutine sub2()

 common /com/a(100,100) ! No data mapping

Chapter5 Tuning and Debug

- 122 -

Note that this option must be specified to all procedures that constitute an HPF executable

program. Also, this option cannot be used with the HPF compiler option -Mnoentry or –

Mnoerrline. When used, only the option specified last is effective.

5.3.3 Accesses out of Declared Bounds

Accesses out of declared bounds of arrays as shown in Figure 127 are not allowed in HPF

programs.

Figure 127 Accesses out of the Declared Bounds of an Array

It is possible to detect the accesses out of bounds at runtime by compiling HPF programs

with the HPF compiler option –Msubchk. When the accesses out of bounds are detected, the

following error message is output.

"a" is accessed out of declared bounds along 1st dim. PROG=main ELN=5

The code to detect the accesses out of bounds is generated so that vectorization and

parallelization are not inhibited as much as possible, but can still cause performance

degradation.

Note that this option cannot be used with the HPF compiler option -Mnoentry or –Mnoerrline.

When used, only the option specified last is effective.

 program main

 real a(100,100)

!HPF$ DISTRIBUTE a(BLOCK, *)

 do i=1,10000

 a(i,1) = i

 enddo

Chapter5 Tuning and Debug

- 123 -

5.3.4 Wrong INDEPENDENT Directives

The loop nest in Figure 128 has the loop-carried dependency and is not parallelizable because

the value of the variable l that is defined in the previous iteration is referenced.

Figure 128 INDEPENDENT Directive to a Non-parallelizable Loop

The HPF compiler ignores all INDEPENDENT directives and performs only automatic

parallelization by specifying the HPF compiler option –Mnoindependent. When this option

enables correct program execution, the program can contain wrong INDEPENDENT

directives.

It is useful to check loops that are not judged as parallelizable automatically referring to

parallelization information lists for finding wrong INDEPENDENT directives.

 l=0

!HPF$ INDEPENDENT,NEW(I,J) ! Wrong

 do i=1,n

do j=1,n

 l = l+1

 a(j,i) = l

enddo

 enddo

Chapter5 Tuning and Debug

- 124 -

Appendix A Syntax of HPF Directives

- 125 -

Appendix A Syntax of HPF Directives

A.1 Directives in the Specification Part

A.1.1 DISTRIBUTE Directive

In the case of specifying a processor arrangement

!HPF$ DISTRIBUTE a (<distribution-format>,…) ONTO p

 or

!HPF$ DISTRIBUTE (<distribution-format>,…) ONTO p :: a,…

 a indicates the name of an array or template

 p indicates the name of a processor arrangement

 <distribution-format> is *, BLOCK[(<expression>)], GEN_BLOCK(map), or

CYCLIC[(<expression>)]

 * specifies that the corresponding axis of the array or template is not

distributed.

 BLOCK specifies that the corresponding axis of the array or template is

distributed evenly. The width of the distribution can be specified with the

optional (<expression>). The width is calculated as follows by default:

(Extent along the corresponding axis of the array or template - 1)/(Extent

of the corresponding axis of the processor arrangement)

 GEN_BLOCK specifies that the corresponding axis of the array or template is

distributed unevenly. (map) specifies the number of array elements distributed

onto each element along the corresponding axis of the processor arrangement.

The values of the one-dimensional array map must be defined in advance.

 CYCLIC specifies that the corresponding axis of the array or template is

distributed in a round-robin fashion. (<expression>) specifies the width of the

distribution. When the width of the distribution is omitted, the width is 1.

In the case of not specifying a processor arrangement

!HPF$ DISTRIBUTE a (<distribution-format>,…)

 or

!HPF$ DISTRIBUTE (<distribution-format>,…) :: a,…

Appendix A Syntax of HPF Directives

- 126 -

A.1.2 TEMPLATE Directive

A.1.3 PROCESSORS Directive

!HPF$ PROCESSORS p (<>,…)

 or

!HPF$ PROCESSORS (<>,…) :: p,…

 p indicates the name of a processor arrangement

 <> indicates bounds along each axis of a processor array. For example, in the

following PROCESSORS directive:

!HPF$ PROCESSORS p(n1,n2)

The number of abstract processers is the same as the size of the processor array p,

n1*n2, and the rank of the processors array, 2, is equal to the number of distributed

axes of arrays.

!HPF$ TEMPLATE t (<>,…)

 or

!HPF$ TEMPLATE (<>,…) :: t,…

 t indicats a template

 <> indicates bounds along each axis of templates

Appendix A Syntax of HPF Directives

- 127 -

A.1.4 ALIGN Directive

A.1.5 SHADOW Directive

A.1.6 SEQUENCE Directive

!HPF$ ALIGN a (<i>,…) WITH t(<f(i)>,…)

 or

!HPF$ ALIGN (<i>,…) WITH t(<f(i)>,…) :: a,…

 a indicates the name of an array

 t indicates the name of an array or template

 <i> indicates an integer scalar variable or *. * specifies the axis is not aligned.

 <f(i)> indicates a linear expression of <i> s*<i>+o, or *, where s and o are integer

expressions.

 When <f(i)> is a linear expression of <i> s*<i>+o, the element of array a <i>

is aligned with the element of the align-target t s*<i>+o.

 When <f(i)> is *, the whole array a is replicated along the axis of the processor

array to which the axis of the align-target t to which * is specified corresponds.



!HPF$ SHADOW a (<shadow width>,…)

 or

!HPF$ SHADOW (<shadow width>,…) :: a,…

 a indicates the name of an array

 <shadow width> is n or l : u, where n is equivalent to n : n, which indicates the

lower shadow width and upper shadow width, respectively. The shadow width must

be a constant.

!HPF$ [NO] SEQUENCE [[::] s,…]

 s is the name of an array or /common block name/. When s,… is omitted in the

SEQUENCE directive, it is treated as if it contained all common block and variables

that are not mapped explicitly. When s,… is omitted in the NOSEQUENCE directive,

it is treated as if it contained all common blocks and variables.

Appendix A Syntax of HPF Directives

- 128 -

A.2 Directives in the Execution Part

A.2.1 INDEPENDENT Directive

Perfectly Parallelizable Loops

!HPF$ INDEPENDENT [, NEW(v,…)]

 v indicates the name of a variable (NEW variable)

Parallelizable Loops with Reduction

!HPF$ INDEPENDENT [, NEW(v,…)], <REDUCTION clause>,…

 v indicates the name of a variable (NEW variable)

 <REDUCTION clause> is

REDUCTION([<reduction-kind1> :] r,…)

 or

REDUCTION([<reduction-kind2> :] r /p,…/,…)

 <reduction-kind1> is +, *, .AND., .OR., .EQV., .NEQV., MAX, MIN, IAND,

IOR, or IEOR

 r indicates the name of a reduction-variable

 <reduction-kind2> is FIRSTMAX, FIRSTMIN, LASTMAX, or LASTMIN

 p indicates the name of a position variable

 When <reduction-kind1> : is omitted, reduction assignments must be

described any of the following forms.

r = r <op> <expr> or r = <expr> <op> r

or

r = <f(r, <expr>)> or r = <f(<expr>, r)>

 r indicates the name of a reduction-variable

 <op> indicates a reduction operator *, /, +, -, .AND., .OR., .EQV.,

or .NEQV.

 <expr> indicates an expression that does not include the reduction

variables and is estimated before the operation <op>.

 <f()> indicates a reference to the function MAX, MIN, IAND, IOR, or

IEOR

Appendix A Syntax of HPF Directives

- 129 -

A.2.2 ON-HOME-LOCAL Directive Construct and Directive

A.2.3 REFLECT Directive

ON-HOME-LOCAL directive construct

!HPF$ ON HOME(<array section>) [, LOCAL[(v,…)]] BEGIN

 Sequence of <executable statement or construct>

!HPF$ END ON

 The abstract processors onto which <array section> is mapped execute the

sequence of <executable statement or construct>.

 v indicates the name of a variable for which data transfers are not needed. When

(v,…) is omitted, data transfers are not needed for all variables that appear in the

sequence of <executable statement or construct>.

ON-HOME-LOCAL directive

!HPF$ ON HOME(<array section>) [, LOCAL[(v,…)]]

 The abstract processors onto which <array section> is mapped execute the

immediately following executable statement or construct.

!HPF$ REFLECT [(<shadow width>,…)] [::] a,…

 a indicates the name of an array, which must appear in the SHADOW directive in

the specification part of the scoping unit.

 When <shadow width>,… is specified, the shift transfer is performed only on the

specified part of the shadow area, which is called the partial REFLECT directive.

Appendix A Syntax of HPF Directives

- 130 -

A.3 Other Features

A.3.1 EXTRINSIC Prefix

EXTRINSIC (<lang> , <model>)

or

EXTRINSIC (<extrinsic-kind-keyword>)

 <lang> is ”HPF” or “Fortran”

 <model> is “GLOBAL”, “LOCAL”, or ”SERIAL”. ”GLOBAL”, “LOCAL”,

and ”SERIAL” indicate global model, local model, and serial model,

respectively.

 <extrinsic-kind-keyward> is HPF, HPF_LOCAL, HPF_SERIAL,

Fortran_LOCAL, or Fortran_SERIAL, which indicate global model HPF,

local model HPF, serial model HPF, local model Fortran, and serial model

Fortran, respectively.

Appendix B Frequently Asked Questions

131

Appendix B Frequently Asked Questions

A.1 Data Mapping

 How are variables that do not appear in the DISTRIBUTE directive nor ALIGN directive

mapped?

 They are replicated on all abstract processors.

A.2 Data Transfer

 Redundant data transfers occur for allocatable arrays and assumed-shape arrays.

 Map allocatable arrays and assumed-shape arrays using ALIGN directives. Refer to

subsection 4.1.4 for details.

A.3 Execution Performance and Memory Usage

 Memory usage at runtime is too large.

 Possible causes are as follows:

 The shadow areas of width four are automatically allocated along the axes

distributed with the BLOCK distribution or GEN_BLOCK distribution by default for

efficient shift transfer. If your HPF program does not need the shift transfer,

memory usage can be reduced by specifying the shadow width as zero. Specify

the shadow width with the SHADOW directive or the HPF compiler option –

Moverlap=size:n as follows.

 When large arrays are initialized in the specification part or using DATA

statements, the memory area for the whole arrays is allocated on each abstract

processor. In such cases, the memory usage can be reduced by initializing them

at the beginning of runtime.

 When data transfers occur for execution of loops or invocations of procedures,

the memory area for the whole arrays targeted for the data transfers can be

%> ve-hpf –Moverlap=size:0 source.hpf

Appendix B Frequently Asked Questions

132

allocated on each abstract processor. In such cases, the memory usage can be

reduced by specifying that the loops are parallelizable or no data transfers are

needed. You can find where data transfers occur referring to the parallelization

information lists or diagnostic messages.

 Specify that loops are parallelizable with the INDEPENDENT directives (+

REDUCTION clauses).

 Specify that no data transfers are needed with the ON-HOME-LOCAL

directive constructs.

 Modify data mappings of arrays or description of loops so that necessary data

transfers are reduced.

 Specify data mappings so that the data mappings of actual arguments and

corresponding dummy arguments are the same.

 Arrays that do not appear in the DISTRIBUTE directive nor ALIGN directive are

replicated on all abstract processors. Map large arrays if possible.

 In the hybrid parallelization, where both the distributed-memory parallelization and

shared-memory parallelization are performed, local variables are allocated on each

thread. Therefore, when large local arrays are used, memory usage for the shared-

memory parallelization becomes large. In such cases, the memory usage can be

reduced by changing local arrays into global arrays, because the memory area for

global arrays is shared by all threads by default.

 The execution performance significantly drops when the Fortran compiler option –

mparallel is used.

 When the Fortran compiler option –mparallel is used, both the distributed-memory

parallelization by the HPF compiler and shared-memory parallelization by the Fortran

compiler are performed. The number of parallelization is the product of the number

of abstract processors in HPF and number of threads for the shared-memory

parallelization. When the number of parallelization on each VE node exceeds the

number of cores on the VE node, the execution performance significantly drops

because of the conflict. Specify the number of threads with the runtime environment

variable OMP_NUM_THREADS or VE_OMP_NUM_THREAD, and the number of

processes so that the number of parallelization does not exceed the number of cores

Appendix B Frequently Asked Questions

133

on every VE node.

 The execution performance is not good though major loops are parallelized and inefficient

data transfers are not generated in the parallelization information lists and diagnostic

messages.

 Possible causes are as follows:

 When data mappings with DISTRIBUTE directives, ALIGN directives, and

SHADOW directives of actual arguments and corresponding dummy arguments

differ, data transfers occur at the invocation of and return from the procedures.

Check whether data transfers at procedure boundaries occur with the HPF

runtime option –hpf –commmsg, because such data transfers cannot be detected

at compilation time.

The following warning message at runtime shows that data transfer between an

actual argument and the corresponding dummy argument occurs. Modify the

HPF program so that the data mapping of the actual argument is the same as

that of the corresponding dummy argument referring to the name of the

procedure and dummy argument in the warning message.

"Dummy-argument name": Communication occurs at procedure boundary

PROG="Procedure name" ELN="Line number"

 The numbers of iterations of loops parallelized by the HPF compiler become

smaller, and initial parameters and terminal parameters of loops become

variables. As a result, the loops targeted for vectorization can be changed from

the serial execution, and the performance can drop because of shorter vector

length. When the FTRACE information shows that the vector length is much

shorter than the serial execution, check whether loops which are parallelized

and whose lengths become shorter are vectorized. Then change the loops

targeted for vectorization using the NEC Fortran directives such as novector.

%> mpirun –np 4 ./a.out –hpf -commmsg

Appendix B Frequently Asked Questions

134

 The inline expansion of procedures invoked many times can be inhibited because

of the parallelization by the HPF compiler, which can cause performance

degradation.

 When procedures which are inline expanded in the serial execution do not

have array dummy arguments, the inline expansion may be performed also

in parallel execution with the HPF compiler option -Mnoentry.

 When procedures which are inline expanded in the serial execution have

array dummy arguments, the inline expansion should be performed manually.

A.4 Miscellaneous

 INDEPENDENT directives cause incorrect execution results.

 Possible causes are as follows. Also, refer to subsection 5.3.4 for how to detect wrong

INDEPENDENT directives.

 INDEPENDENT directives to non-parallelizable loops result in incorrect execution

results. In the following example, the INDEPENDENT directive cannot be

specified because the value of the variable l that is defined in the previous

iteration is referenced.

The following modification makes the loop parallelizable, and the INDEPENDENT

directive can be specified.

l=0

!HPF$ INDEPENDENT,NEW(I,J) ! Wrong

 do i=1,n

do j=1,n

 l = l+1

 a(j,i) = l

enddo

 enddo

Appendix B Frequently Asked Questions

135

 INDEPENDENT directives without REDUCTION clauses to the loops that perform

reduction computation result in wrong execution results. In the following

example, the INDEPENDENT directive without REDUCTION clause cannot be

specified because the loop performs the sum-reduction computation on the array

a.

The correct execution result can be obtained by specifying the REDUCTION

clause to the array a as follows, or deleting the INDEPENDENT directive.

!HPF$ INDEPENDENT,NEW(I,J)

 do i=1,n

do j=1,n

 a(j,i) = 1+n*(i-1)*(j-1)

enddo

 enddo

!HPF$ INDEPENDENT,NEW(i) ! Wrong

 do j=1,n

do i=1,n

 a(i) = a(i) + b(i,j)

enddo

 enddo

Appendix B Frequently Asked Questions

136

!HPF$ INDEPENDENT,NEW(i),REDUCTION(a)

 do j=1,n

do i=1,n

 a(j) = a(j) + b(i,j)l

enddo

 enddo

Appendix C History

137

Appendix C History

History table

September. 2020 1st edition

Appendix C History

138

Index

139

Index

A

abstract processor .. 43

accesses out of declared bounds 122

address passing ... 86

ALIGN directive 54, 127

align target .. 55

allocatable array 53, 86, 119, 131

array section .. 86, 118

assumed-shape array 56, 87, 131

assumed-size array 86, 87

automatic array............................... 53, 56, 119

B

BLOCK distribution 45

boundary processing 97, 98, 116

Boundary Processing 76, 100

bounds .. 56

C

common compiler option 25

Compressed Row Storage 76

computation mapping 15

CRS .. 76

CYCLIC distribution 46

D

data mapping .. 15

data transfer .. 15

dependencies ... 62

diagnostic message 65, 94

DISTRIBUTE directive 17, 43, 125

E

environment variable 38, 40

explicit interface 74, 88

explicit shape array 87

extended intrinsic procedure 83

EXTRINSIC prefix 73, 88, 130

EXTRINSIC procedure 18, 73, 88

F

format list ... 94

Fortran_LOCAL .. 75

FTRACE information 133

G

GEN_BLOCK distribution 47

global model .. 16, 73

global reduction ... 71

H

home array ... 75

HPF compilation command 23

HPF compiler option 23, 26

HPF executable program 19, 37

HPF runtime option 38

HPF_LOCAL_WCLOCK(ATIME) 83

HPF_WCLOCK(TIME) 84

HPF-execution specification 37

hybrid parallelization 132

I

INDEPENDENT directive 62, 128

INDEPENDENT loop 62

Index

140

inline expansion ... 134

interface block 74, 88

intermediate code .. 92

L

local model .. 73

local reduction ... 71

loop fission .. 96

M

map .. 16

MPI.. iv

MPI executable program 19

MPI runtime option 37

MPI setup script 23, 37

N

NEC Fortran compiler 19

NEC Fortran compiler directive 35

NEC Fortran compiler option 23, 35

NEC Fortran directive 133

NEC MPI .. 19

NEC MPI compiler option 23, 36

NEC MPI environment variable 40

NEC MPI runtime option 40

NEW clause ... 67, 96

NEW variable ... 67

NOSEQUENCE directive 61

NUMBER_OF_PROCESSORS() 52

O

OMP_NUM_THREADS 132

ON-HOME-LOCAL directive 78, 81, 98, 116

ON-HOME-LOCAL directive construct . 76, 99, 129

OpenMP ... iv

P

parallelization information list 65, 89

procedure cloning 102, 114

processing assignment 15

processor arrangement 50

processor array ... 50

PROCESSORS directive 50, 126

R

REDUCTION clause 71

reduction computation 71, 104, 111, 135

reduction variable 70, 71

REFLECT directive 81, 129

replicated ... 61

S

sequence association.................................... 85

SEQUENCE directive 61, 127

serial model .. 73

shadow area ... 80

SHADOW directive 81, 127

shared-memory parallelization 105

shift transfer .. 65, 80

sparse matrix .. 76

storage association 85

T

template ... 58

TEMPLATE directive 58, 126

V

VE .. iv

VE_HPF_COMPILER_PATH 36

VE_OMP_NUM_THREAD 132

Vector Engine ... iv

Vector Host .. iv

vector length ... 133

Index

141

VH ... iv

W

width .. 46

work array .. 95

work variable .. 67

 © NEC Corporation 2020

© The Portland Group, Inc 1995

 No part of this document may be reproduced, in any form or by

any means, without permission from NEC Corporation.

SX-Aurora TSUBASA System Software

SX-Aurora TSUBASA

NEC HPF User’s Guide

1st Edition September 2020

NEC Corporation

	Proprietary Notice
	Preface
	Definitions and Abbreviations
	Contents
	List of tables
	List of figures
	Chapter1 Getting Started
	1.1 Introduction to HPF
	1.1.1 Distributed-Memory Parallel Programming with HPF
	1.1.2 HPF Program Examples
	1.1.3 Overview of the HPF Specification

	1.2 Introduction to the NEC HPF compiler
	1.2.1 Compilation and Link of HPF Programs
	1.2.2 Execution of HPF Programs
	1.2.3 Notes and Restrictions

	Chapter2 Compilation and Link of HPF Programs
	2.1 Compilation and Link of HPF Programs
	2.2 File Name Conventions
	2.2.1 Input Files
	2.2.2 Output Files

	2.3 Compiler Options
	2.3.1 NEC Fortran Compiler Directives
	2.3.2 NEC Fortran Compiler Options
	2.3.3 NEC MPI Compiler Options

	2.4 Environment Variables

	Chapter3 Execution of HPF Programs
	3.1 Execution of HPF Programs
	3.2 Runtime Options
	3.2.1 NEC Fortran Compiler Runtime Environment Variables
	3.2.2 NEC MPI Runtime Options
	3.2.3 NEC MPI Environment Variables

	Chapter4 HPF Programming
	4.1 Data Mapping
	4.1.1 DISTRIBUTE Directive
	4.1.2 Selection of Distribution Format
	4.1.3 PROCESSORS Directive
	4.1.4 ALIGN Directive
	4.1.5 TEMPLATE Directive
	4.1.6 Summary of Data Mapping in HPF
	4.1.7 Variables That Cannot Be Mapped

	4.2 Computation Mapping and Data Transfer
	4.2.1 INDEPENDENT Directive
	4.2.2 NEW Clause
	4.2.3 REDUCTION Clause
	4.2.4 Parallelization of Loops with Reference to Procedures
	4.2.5 ON-HOME-LOCAL Directive Construct and Directive
	4.2.6 SHADOW Directive and REFLECT Directive

	4.3 Extended Intrinsic Procedures
	4.3.1 Timing Procedures

	4.4 Clean up of Fortran Code

	Chapter5 Tuning and Debug
	5.1 Tuning
	5.1.1 Parallelization Information List
	5.1.2 Diagnostic Messages
	5.1.3 Examples of Tuning of HPF Programs

	5.2 An Easy and Simple Way of Developing HPF Programs
	5.3 Debug
	5.3.1 Inconsistency between Actual and Dummy Arguments
	5.3.2 Inconsistency in Common Variables
	5.3.3 Accesses out of Declared Bounds
	5.3.4 Wrong INDEPENDENT Directives

	Appendix A Syntax of HPF Directives
	A.1 Directives in the Specification Part
	A.1.1 DISTRIBUTE Directive
	A.1.2 TEMPLATE Directive
	A.1.3 PROCESSORS Directive
	A.1.4 ALIGN Directive
	A.1.5 SHADOW Directive
	A.1.6 SEQUENCE Directive

	A.2 Directives in the Execution Part
	A.2.1 INDEPENDENT Directive
	A.2.2 ON-HOME-LOCAL Directive Construct and Directive
	A.2.3 REFLECT Directive

	A.3 Other Features
	A.3.1 EXTRINSIC Prefix

	Appendix B Frequently Asked Questions
	A.1 Data Mapping
	A.2 Data Transfer
	A.3 Execution Performance and Memory Usage
	A.4 Miscellaneous

	Appendix C History
	History table

	Index

