nlcpy.histogram2d
- nlcpy.histogram2d(x, y, bins=10, range=None, normed=None, weights=None, density=None)
- Computes the bi-dimensional histogram of two data samples. - Parameters
- xarray_like,shape(N,)
- An array containing the x coordinates of the points to be histogrammed. 
- yarray_like,shape(N,)
- An array containing the y coordinates of the points to be histogrammed. 
- binsint or array_like or [int, int] or [array, array], optional
- The bin specification: - If int, the number of bins for the two dimensions (nx=ny=bins). 
- If array_like, the bin edges for the two dimensions (x_edges=y_edges=bins). 
- If [int, int], the number of bins in each dimension (nx, ny = bins). 
- If [array, array], the bin edges in each dimension (x_edges, y_edges = bins). 
- A combination [int, array] or [array, int], where int is the number of bins and array is the bin edges. 
 
- rangearray_like, shape(2,2), optional
- The leftmost and rightmost edges of the bins along each dimension (if not specified explicitly in the bins parameters): - [[xmin, xmax], [ymin, ymax]]. All values outside of this range will be considered outliers and not tallied in the histogram.
- normedbool, optional
- An alias for the density argument that behaves identically. To avoid confusion with the broken normed argument to - histogram(), density should be preferred.
- weightsarray_like, shape(N,),optional
- An array of values - w_iweighing each sample- (x_i, y_i). Weights are normalized to 1 if normed is True. If normed is False, the values of the returned histogram are equal to the sum of the weights belonging to the samples falling into each bin.
- densitybool, optional
- If False, the default, returns the number of samples in each bin. If True, returns the probability density function at the bin, - bin_count / sample_count / bin_area.
 
- Returns
- Hndarray,shape(nx, ny)
- The bi-dimensional histogram of samples x and y. Values in x are histogrammed along the first dimension and values in y are histogrammed along the second dimension. 
- xedgesndarray, shape(nx+1,)
- The bin edges along the first dimension. 
- yedgesndarray, shape(ny+1,)
- The bin edges along the second dimension. 
 
 - See also - histogram
- Computes the histogram of a set of data. 
- histogramdd
- Computes the multidimensional histogram of some data. 
 - Note - When normed is True, then the returned histogram is the sample density, defined such that the sum over bins of the product - bin_value * bin_areais 1.- Please note that the histogram does not follow the Cartesian convention where x values are on the abscissa and y values on the ordinate axis. Rather, x is histogrammed along the first dimension of the array (vertical), and y along the second dimension of the array (horizontal). This ensures compatibility with - histogramdd().- Restriction - This function is the wrapper function to utilize - numpy.histogram2d(). Calculations during this function perform on only Vector Host(Linux/x86).- Examples - >>> import nlcpy as vp >>> vp.random.seed(42) >>> z = vp.random.randn(2,50) >>> H, xedges,yedges = vp.histogram2d(z[0],z[1], bins=5) >>> H.shape, xedges[0].size, yedges[0].size ((5, 5), 1, 1)