Random Sampling

NLCPy random number routines produce pseudo random numbers and create sample from different statistical distributions.

Generator

The Generator provides access to a wide variety of probability distributions, and serves as a replacement for RandomState.

An easy example of Generator is below:

from nlcpy.random import Generator, MT19937
rng = Generator(MT19937(12345))
rng.standard_normal()

And, an easy example of using default_rng is below:

import nlcpy as vp
rng = vp.random.default_rng()
rng.standard_normal()

Available Functions and Methods

The following tables show that nlcpy.random.Generator class methods to generate random numbers.

Construct Generator

nlcpy.random.default_rng

Constructs a new nlcpy.random.Generator with the default BitGenerator (MT19937).

Simple Random Data

nlcpy.random.Generator.bytes

Returns random bytes.

nlcpy.random.Generator.integers

Returns random integers from low (inclusive) to high (exclusive), or if endpoint=True, low (inclusive) to high (inclusive).

nlcpy.random.Generator.random

Returns random floats in the half-open interval [0.0, 1.0).

Permutations

nlcpy.random.Generator.permutation

Randomly permutes a sequence, or returns a permuted range.

nlcpy.random.Generator.shuffle

Modifies a sequence in-place by shuffling its contents.

Distributions

nlcpy.random.Generator.binomial

Draws samples from a binomial distribution.

nlcpy.random.Generator.exponential

Draws samples from an exponential distribution.

nlcpy.random.Generator.gamma

Draws samples from a Gamma distribution.

nlcpy.random.Generator.geometric

Draws samples from a geometric distribution.

nlcpy.random.Generator.gumbel

Draws samples from a Gumbel distribution.

nlcpy.random.Generator.logistic

Draws samples from a logistic distribution.

nlcpy.random.Generator.lognormal

Draws samples from a log-normal distribution.

nlcpy.random.Generator.normal

Draws random samples from a normal (Gaussian) distribution.

nlcpy.random.Generator.poisson

Draws samples from a Poisson distribution.

nlcpy.random.Generator.standard_cauchy

Draws samples from a standard Cauchy distribution with mode = 0.

nlcpy.random.Generator.standard_exponential

Draws samples from a standard exponential distribution.

nlcpy.random.Generator.standard_gamma

Draws samples from a standard Gamma distribution.

nlcpy.random.Generator.standard_normal

Draws samples from a standard Normal distribution (mean=0, stdev=1).

nlcpy.random.Generator.uniform

Draws samples from a uniform distribution.

nlcpy.random.Generator.weibull

Draws samples from a Weibull distribution.

RandomState

The RandomState provides access to legacy generators. An easy example of RandomState is below:

# Uses the nlcpy.random.RandomState
from nlcpy import random
random.standard_normal()
# or
rst = random.RandomState()
rst.standard_normal()

Available Functions and Methods

Seeding and State

nlcpy.random.RandomState.get_state

Returns an ndarray representing the internal state of the generator.

nlcpy.random.RandomState.seed

Reseeds a default bit generator(MT19937), which provide a stream of random bits.

nlcpy.random.RandomState.set_state

Sets the internal state of the generator from an ndarray.

Simple Random Data

nlcpy.random.RandomState.bytes

Returns random bytes.

nlcpy.random.RandomState.rand

Random values in a given shape.

nlcpy.random.RandomState.randint

Returns random integers from low (inclusive) to high (exclusive).

nlcpy.random.RandomState.randn

Returns a sample (or samples) from the "standard normal" distribution.

nlcpy.random.RandomState.random

Returns random floats in the half-open interval [0.0, 1.0).

nlcpy.random.RandomState.random_integers

Random integers of type nlcpy.int64/nlcpy.int32 between low and high, inclusive.

nlcpy.random.RandomState.random_sample

Returns random floats in the half-open interval [0.0, 1.0).

nlcpy.random.RandomState.ranf

This is an alias of random_sample.

nlcpy.random.RandomState.sample

This is an alias of random_sample.

nlcpy.random.RandomState.tomaxint

Random integers between 0 and nlcpy.iinfo(nlcpy.int_).max, inclusive.

Permutations

nlcpy.random.RandomState.permutation

Randomly permutes a sequence, or returns a permuted range.

nlcpy.random.RandomState.shuffle

Modifies a sequence in-place by shuffling its contents.

Distributions

nlcpy.random.RandomState.binomial

Draws samples from a binomial distribution.

nlcpy.random.RandomState.exponential

Draws samples from an exponential distribution.

nlcpy.random.RandomState.gamma

Draws samples from a Gamma distribution.

nlcpy.random.RandomState.geometric

Draws samples from a geometric distribution.

nlcpy.random.RandomState.gumbel

Draws samples from a Gumbel distribution.

nlcpy.random.RandomState.logistic

Draws samples from a logistic distribution.

nlcpy.random.RandomState.lognormal

Draws samples from a log-normal distribution.

nlcpy.random.RandomState.normal

Draws random samples from a normal (Gaussian) distribution.

nlcpy.random.RandomState.poisson

Draws samples from a Poisson distribution.

nlcpy.random.RandomState.standard_cauchy

Draws samples from a standard Cauchy distribution with mode = 0.

nlcpy.random.RandomState.standard_exponential

Draws samples from a standard exponential distribution.

nlcpy.random.RandomState.standard_gamma

Draws samples from a standard Gamma distribution.

nlcpy.random.RandomState.standard_normal

Draws samples from a standard Normal distribution (mean=0, stdev=1).

nlcpy.random.RandomState.uniform

Draws samples from a uniform distribution.

nlcpy.random.RandomState.weibull

Draws samples from a Weibull distribution.