nlcpy.logspace
- nlcpy.logspace(start, stop, num=50, endpoint=True, base=10.0, dtype=None, axis=0)[source]
- Returns numbers spaced evenly on a log scale. - In linear space, the sequence starts at - base ** start(base to the power of start) and ends with- base ** stop(see endpoint below).- Parameters
- startarray_like
- base ** startis the starting value of the sequence.
- stoparray_like
- base ** stopis the final value of the sequence, unless endpoint is False. In that case,- num + 1values are spaced over the interval in log-space, of which all but the last (a sequence of length num) are returned.
- numint, optional
- Number of samples to generate. Default is 50. 
- endpointbool, optional
- If true, stop is the last sample. Otherwise, it is not included. Default is True. 
- basefloat, optional
- The base of the log space. The step size between the elements in - ln(samples) / ln(base)(or- log_base(samples)) is uniform. Default is 10.0.
- dtypedtype, optional
- The type of the output array. If dtype is not given, infer the data type from the other input arguments. 
- axisint, optional
- The axis in the result to store the samples. Relevant only if start or stop are array-like. By default (0), the samples will be along a new axis inserted at the beginning. Use -1 to get an axis at the end. 
 
- Returns
- samplesndarray
- num samples, equally spaced on a log scale. 
 
 - See also - Note - Logspace is equivalent to the code - >>> import nlcpy as vp >>> y = vp.linspace(start, stop, num=num, endpoint=endpoint) ... >>> vp.power(base, y).astype(dtype) ... - Examples - >>> import nlcpy as vp >>> vp.logspace(2.0, 3.0, num=4) array([ 100. , 215.443469 , 464.15888336, 1000. ]) >>> vp.logspace(2.0, 3.0, num=4, endpoint=False) array([100. , 177.827941 , 316.22776602, 562.34132519]) >>> vp.logspace(2.0, 3.0, num=4, base=2.0) array([4. , 5.0396842 , 6.34960421, 8. ]) - Graphical illustration: - >>> import matplotlib.pyplot as plt >>> N = 10 >>> x1 = vp.logspace(0.1, 1, N, endpoint=True) >>> x2 = vp.logspace(0.1, 1, N, endpoint=False) >>> y = vp.zeros(N) >>> plt.plot(x1, y, 'o') >>> plt.plot(x2, y + 0.5, 'o') >>> plt.ylim([-0.5, 1]) (-0.5, 1.0) >>> plt.show() 