nlcpy.nanquantile
- nlcpy.nanquantile(a, q, axis=None, out=None, overwrite_input=False, interpolation='linear', keepdims=False)[source]
Computes the q-th quantile of the data along the specified axis, while ignoring nan values. Returns the q-th quantile(s) of the array elements.
- Parameters
- aarray_like
Input array or object that can be converted to an array, containing nan values to be ignored
- qarray_like of float
Quantile or sequence of quantiles to compute, which must be between 0 and 1 inclusive.
- axis{int, tuple of int, None}, optional
Axis or axes along which the quantiles are computed. The default is to compute the quantile(s) along a flattened version of the array.
- outndarray, optional
Alternative output array in which to place the result. It must have the same shape and buffer length as the expected output, but the type (of the output) will be cast if necessary.
- overwrite_inputbool, optional
If True, then allow the input array a to be modified by intermediate calculations, to save memory. In this case, the contents of the input a after this function completes is undefined.
- interpolation{‘linear’,’lower’,’higher’,’midpoint’,’nearest’}
This optional parameter specifies the interpolation method to use when the desired percentile lies between two data points
i < j
:‘linear’:
i + (j - i) * fraction
, wherefraction
is the fractional part of the index surrounded byi
andj
.‘lower’:
i
.‘higher’:
j
.‘nearest’:
i
orj
, whichever is nearest.‘midpoint’:
(i + j)/2
.
- keepdimsbool, optional
If this is set to True, the axes which are reduced are left in the result as dimensions with size one. With this option, the result will broadcast correctly against the original array a.
- Returns
- quantilescalar or ndarray
If q is a single percentile and axis*=None, then the result is a scalar. If multiple quantiles are given, first axis of the result corresponds to the quantiles. The other axes are the axes that remain after the reduction of *a. If the input contains integers or floats smaller than
float64
, the output data-type isfloat64
. Otherwise, the output data-type is the same as that of the input. If out is specified, that array is returned instead.
See also
mean
Computes the arithmetic mean along the specified axis.
percentile
Computes the q-th percentile of the data along the specified axis.
median
Computes the median along the specified axis.
quantile
Computes the q-th quantile of the data along the specified axis.
Restriction
This function is the wrapper function to utilize
numpy.nanquantile()
. Calculations during this function perform on only Vector Host(Linux/x86).Examples
>>> import nlcpy as vp >>> a = vp.array([[10., 7., 4.], [3., 2., 1.]]) >>> a[0][1] = vp.nan >>> a array([[10., nan, 4.], [ 3., 2., 1.]]) >>> vp.quantile(a, 0.5) array(nan) >>> vp.nanquantile(a, 0.5) array(3.) >>> vp.nanquantile(a, 0.5, axis=0) array([6.5, 2. , 2.5]) >>> vp.nanquantile(a, 0.5, axis=1, keepdims=True) array([[7.], [2.]]) >>> m = vp.nanquantile(a, 0.5, axis=0) >>> out = vp.zeros_like(m) >>> vp.nanquantile(a, 0.5, axis=0, out=out) array([6.5, 2. , 2.5]) >>> m array([6.5, 2. , 2.5]) >>> b = a.copy() >>> vp.nanquantile(b, 0.5, axis=1, overwrite_input=True) array([7., 2.]) >>> assert not vp.all(a==b)