nlcpy.random.Generator.uniform
- Generator.uniform(self, low=0.0, high=1.0, size=None)
Draws samples from a uniform distribution.
Samples are uniformly distributed over the half-open interval
[low, high)
(includes low, but excludes high). In other words, any value within the given interval is equally likely to be drawn by uniform.- Parameters
- lowfloat, optional
Lower boundary of the output interval. All values generated will be greater than or equal to low. The default value is 0.
- highfloat
Upper boundary of the output interval. All values generated will be less than high. The default value is 1.0.
- sizeint or tuple of ints, optional
Output shape. If the given shape is, e.g.,
(m, n, k)
, thenm * n * k
samples are drawn.
- Returns
- outndarray
Drawn samples from the parameterized uniform distribution.
See also
Generator.integers
Returns random integers.
Generator.random
Returns random floats.
Note
The probability density function of the uniform distribution is
anywhere within the interval
[a, b)
, and zero elsewhere.When
high
==low
, values oflow
will be returned.Restriction
If low is neither a scalar nor None : NotImplementedError occurs.
If high is neither a scalar nor None : NotImplementedError occurs.
Examples
Draw samples from the distribution:
>>> import nlcpy as vp >>> s = vp.random.default_rng().uniform(-1,0,1000)
All values are within the given interval:
>>> vp.all(s >= -1) array(True) >>> vp.all(s < 0) array(True)
>>> import matplotlib.pyplot as plt >>> count, bins, ignored = plt.hist(s.get(), 15, density=True) >>> plt.plot(bins, vp.ones_like(bins), ... linewidth=2, color='r') >>> plt.show()