nlcpy.linalg.eigh
- nlcpy.linalg.eigh(a, UPLO='L')[source]
- Computes the eigenvalues and eigenvectors of a complex Hermitian or a real symmetric matrix. - Returns two objects, a 1-D array containing the eigenvalues of a, and a 2-D square array or matrix (depending on the input type) of the corresponding eigenvectors (in columns). - Parameters
- a(…, M, M) array_like
- Hermitian or real symmetric matrices whose eigenvalues and eigenvectors are to be computed. 
- UPLO{‘L’, ‘U’}, optional
- Specifies whether the calculation is done with the lower triangular part of a (‘L’, default) or the upper triangular part (‘U’). Irrespective of this value only the real parts of the diagonal will be considered in the computation to preserve the notion of a Hermitian matrix. It therefore follows that the imaginary part of the diagonal will always be treated as zero. 
 
- Returns
- w(…, M) ndarray
- The eigenvalues in ascending order, each repeated according to its multiplicity. 
- v(…, M, M) ndarray
- The column - v[:, i]is the normalized eigenvector corresponding to the eigenvalue- w[i].
 
 - See also - Note - The eigenvalues/eigenvectors are computed using LAPACK routines - _syevd,- _heevd.- The eigenvalues of real symmetric or complex Hermitian matrices are always real. The array v of (column) eigenvectors is unitary and a, w, and v satisfy the equations - dot(a, v[:, i]) = w[i] * v[:, i].- Examples - >>> import nlcpy as vp >>> a = vp.array([[1, -2j], [2j, 5]]) >>> a array([[ 1.+0.j, -0.-2.j], [ 0.+2.j, 5.+0.j]]) >>> w, v = vp.linalg.eigh(a) >>> w; v array([0.17157288, 5.82842712]) array([[-0.92387953+0.j , -0.38268343+0.j ], # may vary [ 0. +0.38268343j, 0. -0.92387953j]]) - >>> # demonstrate the treatment of the imaginary part of the diagonal >>> a = vp.array([[5+2j, 9-2j], [0+2j, 2-1j]]) >>> a array([[5.+2.j, 9.-2.j], [0.+2.j, 2.-1.j]]) >>> # with UPLO='L' this is numerically equivalent to using LA.eig() with: >>> b = vp.array([[5.+0.j, 0.-2.j], [0.+2.j, 2.-0.j]]) >>> b array([[5.+0.j, 0.-2.j], [0.+2.j, 2.+0.j]]) >>> wa, va = vp.linalg.eigh(a) >>> wb, vb = vp.linalg.eig(b) >>> wa; wb array([1., 6.]) array([6.+0.j, 1.+0.j]) >>> va; vb array([[-0.4472136 -0.j , -0.89442719+0.j ], [ 0. +0.89442719j, 0. -0.4472136j ]]) array([[ 0.89442719+0.j , 0. +0.4472136j], [-0. +0.4472136j, 0.89442719+0.j ]])