nlcpy.linalg.eigvalsh
- nlcpy.linalg.eigvalsh(a, UPLO='L')[source]
Computes the eigenvalues of a complex Hermitian or real symmetric matrix.
Main difference from
eigh()
: the eigenvectors are not computed.- Parameters
- a(…, M, M) array_like
A complex- or real-valued matrix whose eigenvalues are to be computed.
- UPLO{‘L’, ‘U’}, optional
Specifies whether the calculation is done with the lower triangular part of a (‘L’, default) or the upper triangular part (‘U’). Irrespective of this value only the real parts of the diagonal will be considered in the computation to preserve the notion of a Hermitian matrix. It therefore follows that the imaginary part of the diagonal will always be treated as zero.
- Returns
- w(…, M) ndarray
The eigenvalues in ascending order, each repeated according to its multiplicity.
See also
Note
The eigenvalues are computed using LAPACK routines
_syevd
,_heevd
.Examples
>>> import nlcpy as vp >>> a = vp.array([[1, -2j], [2j, 5]]) >>> vp.linalg.eigvalsh(a) array([0.17157288, 5.82842712]) # may vary
>>> # demonstrate the treatment of the imaginary part of the diagonal >>> a = vp.array([[5+2j, 9-2j], [0+2j, 2-1j]]) >>> a array([[5.+2.j, 9.-2.j], [0.+2.j, 2.-1.j]]) >>> # with UPLO='L' this is numerically equivalent to using vp.linalg.eigvals() >>> # with: >>> b = vp.array([[5.+0.j, 0.-2.j], [0.+2.j, 2.-0.j]]) >>> b array([[5.+0.j, 0.-2.j], [0.+2.j, 2.+0.j]]) >>> wa = vp.linalg.eigvalsh(a) >>> wb = vp.linalg.eigvals(b) >>> wa; wb array([1., 6.]) array([6.+0.j, 1.+0.j])