nlcpy.random.RandomState.standard_normal
- RandomState.standard_normal(self, size=None)
Draws samples from a standard Normal distribution (mean=0, stdev=1).
- Parameters
- sizeint or tuple of ints, optional
Output shape. If the given shape is, e.g.,
(m, n, k)
, thenm * n * k
samples are drawn.
- Returns
- outndarray
A floating-point array of shape
size
of drawn samples, or a single sample ifsize
was not specified.
See also
RandomState.normal
Draws random samples from a normal (Gaussian) distribution.
Note
For random samples from , use one of:
vp mu + sigma * vp.random.standard_normal(size=...) vp.random.normal(mu, sigma, size=...)
Examples
>>> import nlcpy as vp >>> vp.random.standard_normal() array(2.96222821) >>> s = vp.random.standard_normal(8000) >>> s array([ 0.6888893 , 0.78096262, -0.89086505, ..., 0.49876311, # random -0.38672696, -0.4685006 ]) # random >>> s.shape (8000,) >>> s = vp.random.standard_normal(size=(3, 4, 2)) >>> s.shape (3, 4, 2)
Two-by-four array of samples from N(3, 6.25):
>>> 3 + 2.5 * vp.random.standard_normal(size=(2, 4)) array([[-4.49401501, 4.00950034, -1.81814867, 7.29718677], # random [ 0.39924804, 4.68456316, 4.99394529, 4.84057254]]) # random