Example: Thermal Simulation (Naive Implementation)
Objective
We will simulate the temporal change in temperature of the copper rectangle whose length is 50 cm (= LX), width is 30 cm (= LY) using a finite-difference method.
Physics
Governing Equation
Variable |
Description |
---|---|
Temperature [K] |
|
Time [s] |
|
x coordinate [m] |
|
y coordinate [m] |
Constant |
Description |
Value of Copper |
---|---|---|
Thermal conductivity |
398.0 [W/m K] |
|
Density |
8960.0 [kg/m 3] |
|
Specific heat capacity |
385.0 [J/kg K] |
Boundary Conditions
Initial Conditions
Program
import nlcpy as vp
from matplotlib import pyplot as plt
from matplotlib import animation
LX = 50e-2
LY = 30e-2
T0 = 20.0
T1 = 40.0
T2 = 60.0
HC = 398.0 / (8960.0 * 385.0)
WFRAME = None
DT = 'float32'
def initialize(grid):
grid.fill(T0)
grid[:, 0] = T1
grid[:, -1] = T1
grid[0] = T1
grid[-1] = T1 + T2 * \
vp.sin(vp.pi * vp.linspace(0, LX, grid.shape[1]) / LX)
def compute(grid, coef, temp):
vp.multiply(grid[1:-1, 1:-1], coef[2], out=temp)
temp += grid[1:-1, :-2] * coef[0]
temp += grid[1:-1, 2:] * coef[0]
temp += grid[2:, 1:-1] * coef[1]
temp += grid[:-2, 1:-1] * coef[1]
grid[1:-1, 1:-1] = temp[...]
def heatequation(
nx, # The number of grid points in X-direction.
ny, # The number of grid points in Y-direction.
dt, # The time step interval.
mt, # The maximum number of time steps.
kp, # The number of time steps for drawing interval.
):
mx = nx + 2
my = ny + 2
grid = vp.empty((my, mx), dtype=DT)
temp = vp.empty((ny, nx), dtype=DT)
dx = LX / (nx + 1)
dy = LY / (ny + 1)
coef = [
(HC * dt) / (dx * dx),
(HC * dt) / (dy * dy),
1.0 - HC * dt * (2.0 / (dx * dx) + 2.0 / (dy * dy)),
]
x = vp.linspace(0, LX, mx)
y = vp.linspace(0, LY, my)
xx, yy = vp.meshgrid(x, y)
print("initializing grid...", end="", flush=True)
initialize(grid)
print("done", flush=True)
grid_for_plot = [grid, ]
fig = plt.figure(figsize=(6, 6))
ax = fig.add_subplot(111, projection='3d')
print("computing difference method...", end="", flush=True)
for i in range(int(mt/dt)):
compute(grid, coef, temp)
if i % int(kp/dt) == 0:
grid_for_plot.append(grid.get())
print("done", flush=True)
def animate(i):
global WFRAME
if WFRAME:
ax.collections.remove(WFRAME)
WFRAME = ax.plot_wireframe(
xx, yy, grid_for_plot[i], rstride=10, cstride=10)
ax.set_title('time : {:2.1f} [sec]'.format(i * kp))
def animate_init():
ax.set_xlabel("x[m]")
ax.set_ylabel("y[m]")
ax.set_zlabel("T[$^{\circ}$C]")
ax.zaxis.set_rotate_label(False)
ax.set_zlim(T0, T1 + T2)
print("creating animation...", end="", flush=True)
animation.FuncAnimation(
fig,
animate,
interval=200,
frames=int(mt / kp + 1),
repeat=False,
init_func=animate_init
).save(
"thermal_simulation.gif",
writer='pillow'
)
print("done", flush=True)
if __name__ == "__main__":
heatequation(500, 300, 0.001, 30, 1.)