nlcpy.random.RandomState.randn
- RandomState.randn(self, size)
Returns a sample (or samples) from the “standard normal” distribution.
If positive int_like arguments are provided, randn generates an array of shape
(d0, d1, ..., dn)
, filled with random floats sampled from a univariate “normal” (Gaussian) distribution of mean 0 and variance 1.- Parameters
- sizeint or tuple of ints, optional
The dimensions of the returned array, must be non-negative.
- Returns
- Zndarray
A
(d0, d1, ..., dn)
-shaped array of floating-point samples from the standard normal distribution, or a single such float if no parameters were supplied.
See also
RandomState.standard_normal
Draws samples from a standard Normal distribution (mean=0, stdev=1).
RandomState.normal
Draws random samples from a normal (Gaussian) distribution.
Note
For random samples from , use:
sigma * vp.random.randn(...) + mu
Examples
>>> import nlcpy as vp >>> vp.random.randn() array(0.54214143) # random
Two-by-four array of samples from N(3, 6.25):
>>> 3 + 2.5 * vp.random.randn(2, 4) array([[-4.49401501, 4.00950034, -1.81814867, 7.29718677], # random [ 0.39924804, 4.68456316, 4.99394529, 4.84057254]]) # random