nlcpy.random.RandomState.randn
- RandomState.randn(self, size)
- Returns a sample (or samples) from the “standard normal” distribution. - If positive int_like arguments are provided, randn generates an array of shape - (d0, d1, ..., dn), filled with random floats sampled from a univariate “normal” (Gaussian) distribution of mean 0 and variance 1.- Parameters
- sizeint or tuple of ints, optional
- The dimensions of the returned array, must be non-negative. 
 
- Returns
- Zndarray
- A - (d0, d1, ..., dn)-shaped array of floating-point samples from the standard normal distribution, or a single such float if no parameters were supplied.
 
 - See also - RandomState.standard_normal
- Draws samples from a standard Normal distribution (mean=0, stdev=1). 
- RandomState.normal
- Draws random samples from a normal (Gaussian) distribution. 
 - Note - For random samples from - , use: - sigma * vp.random.randn(...) + mu - Examples - >>> import nlcpy as vp >>> vp.random.randn() array(0.54214143) # random - Two-by-four array of samples from N(3, 6.25): - >>> 3 + 2.5 * vp.random.randn(2, 4) array([[-4.49401501, 4.00950034, -1.81814867, 7.29718677], # random [ 0.39924804, 4.68456316, 4.99394529, 4.84057254]]) # random