サンプル: 流体シミュレーション
目的
ナビエ・ストークス方程式を解くことにより、カルマン渦列を視覚化します。
物理
連続方程式
Chorinの射影法
ナビエ・ストークス方程式を解くために、コリンの射影法 1 2 を用います。 方法の詳細については、以下のリストを参照してください。
- 1
Chorin, A. J. (1967), “The numerical solution of the Navier-Stokes equations for an incompressible fluid”, Bull. Am. Math. Soc. 73: 928–931
- 2
Chorin, A. J. (1968), “Numerical Solution of the Navier-Stokes Equations”, Math. Comp. 22: 745–762, doi:10.1090/s0025-5718-1968-0242392-2
このサンプルでは、次の計算フローがタイムステップ数だけ繰り返されます。
一時的な流速 を決定します。
ここで、 はタイムステップ での流速です。
ポアソン方程式を解いて圧力 を決定します。
ポアソン方程式を解くために、ヤコビ法を用います。
流速 を決定します。
境界値条件
境界値 |
流速 |
圧力 |
---|---|---|
流入() |
||
流出() |
||
物体表面 |
||
物体内部 |
プログラム
import nlcpy as vp
from matplotlib import pyplot as plt
from matplotlib import animation
Re = 100
DX = .01
DY = .01
DT = .002
NT = 30000
PLOT_INTERVAL = 500
LX = 15.
LY = 10.
NX = int((LX // DX) + 1)
NY = int((LY // DY) + 1)
U_INJ = .9
V_INJ = .1
MAX_ITER_JACOBI = 50
TOL_JACOBI = 1e-3
OBJ_X_BEGIN = int(NX // 4)
OBJ_X_END = int(NX // 4 + NX // 15)
OBJ_Y_BEGIN = int(NY // 2 - NY // 10)
OBJ_Y_END = int(NY // 2 + NY // 10)
OBJ_X_IND = slice(OBJ_X_BEGIN, OBJ_X_END + 1)
OBJ_X_INNER_IND = slice(OBJ_X_BEGIN + 1, OBJ_X_END) # exclude surface
OBJ_Y_IND = slice(OBJ_Y_BEGIN, OBJ_Y_END + 1)
OBJ_Y_INNER_IND = slice(OBJ_Y_BEGIN + 1, OBJ_Y_END) # exclude surface
DTYPE = 'float32'
def init():
u = vp.sca.create_optimized_array((NY, NX), dtype=DTYPE) # x-axial velocity
v = vp.sca.create_optimized_array((NY, NX), dtype=DTYPE) # y-axial velocity
p = vp.sca.create_optimized_array((NY, NX), dtype=DTYPE) # pressure
u_tmp = vp.sca.create_optimized_array((NY, NX), dtype=DTYPE)
v_tmp = vp.sca.create_optimized_array((NY, NX), dtype=DTYPE)
p_tmp = vp.sca.create_optimized_array((NY, NX), dtype=DTYPE)
s = vp.sca.create_optimized_array((NY, NX), dtype=DTYPE) # right hand side of poisson
# injection
u[1:-1, 0] = U_INJ
v[1:-1, 0] = V_INJ
u[0, 1:-1] = U_INJ
v[0, 1:-1] = V_INJ
u[-1, 1:-1] = U_INJ
v[-1, 1:-1] = V_INJ
u_tmp[...] = u
v_tmp[...] = v
return u, v, p, u_tmp, v_tmp, p_tmp, s
def bnd_velocity(u, v, u_tmp, v_tmp):
u[OBJ_Y_IND, OBJ_X_IND] = 0
v[OBJ_Y_IND, OBJ_X_IND] = 0
u[1:-1, -1] = u_tmp[1:-1, -2] # du/dx = 0
v[1:-1, -1] = v_tmp[1:-1, -2] # dv/dx = 0
def bnd_pressure(p, p_tmp):
p[OBJ_Y_INNER_IND, OBJ_X_INNER_IND] = 0
p[OBJ_Y_IND, OBJ_X_BEGIN] = p_tmp[OBJ_Y_IND, OBJ_X_BEGIN - 1] # dp/dx = 0
p[OBJ_Y_IND, OBJ_X_END] = p_tmp[OBJ_Y_IND, OBJ_X_END + 1] # dp/dx = 0
p[OBJ_Y_BEGIN, OBJ_X_IND] = p_tmp[OBJ_Y_BEGIN - 1, OBJ_X_IND] # dp/dy = 0
p[OBJ_Y_END, OBJ_X_IND] = p_tmp[OBJ_Y_END + 1, OBJ_X_IND] # dp/dy = 0
p[1:-1, -1] = p_tmp[1:-1, -2] # dp/dx = 0
def set_temporary_velocity_kernel(u_w1, v_w1, u_w2, v_w2, c, kernels):
du_w1, dv_w1, du_w2, dv_w2 = vp.sca.create_descriptor((u_w1, v_w1, u_w2, v_w2))
desc_u = (
c[0] * du_w1[0, 0] +
c[1] * (u_w1[1:-1, 1:-1] * (du_w1[0, 1] - du_w1[0, -1])) +
c[2] * (v_w1[1:-1, 1:-1] * (du_w1[1, 0] - du_w1[-1, 0])) +
c[3] * (du_w1[0, 1] + du_w1[0, -1]) +
c[4] * (du_w1[1, 0] + du_w1[-1, 0])
)
kern_u = vp.sca.create_kernel(desc_u, desc_o=du_w2[0, 0])
kernels['temporary_u'] = kern_u
desc_v = (
c[0] * dv_w1[0, 0] +
c[1] * (u_w1[1:-1, 1:-1] * (dv_w1[0, 1] - dv_w1[0, -1])) +
c[2] * (v_w1[1:-1, 1:-1] * (dv_w1[1, 0] - dv_w1[-1, 0])) +
c[3] * (dv_w1[0, 1] + dv_w1[0, -1]) +
c[4] * (dv_w1[1, 0] + dv_w1[-1, 0])
)
kern_v = vp.sca.create_kernel(desc_v, desc_o=dv_w2[0, 0])
kernels['temporary_v'] = kern_v
def set_poisson_kernel(u, v, p_w1, p_w2, s, c1, c2, kernels):
du, dv, dp_w1, dp_w2, ds = vp.sca.create_descriptor((u, v, p_w1, p_w2, s))
desc_right = (
c1[0] * (du[0, 1] - du[0, -1]) +
c1[1] * (dv[1, 0] - dv[-1, 0])
)
kern_right = vp.sca.create_kernel(desc_right, desc_o=ds[0, 0])
kernels['poisson_right_hand'] = kern_right
desc_p = (
c2[0] * (dp_w1[0, 1] + dp_w1[0, -1]) +
c2[1] * (dp_w1[1, 0] + dp_w1[-1, 0]) +
c2[2] * ds[0, 0]
)
kern_p = vp.sca.create_kernel(desc_p, desc_o=dp_w2[0, 0])
kernels['poisson_solve_p'] = kern_p
def set_next_velocity_kernel(u_w1, v_w1, p, u_w2, v_w2, c, kernels):
du_w1, dv_w1, dp, du_w2, dv_w2 = \
vp.sca.create_descriptor((u_w1, v_w1, p, u_w2, v_w2))
desc_u = (
du_w1[0, 0] + c[0] * (dp[0, 1] - dp[0, -1])
)
kern_u = vp.sca.create_kernel(desc_u, desc_o=du_w2[0, 0])
kernels['next_velocity_u'] = kern_u
desc_v = (
dv_w1[0, 0] + c[1] * (dp[1, 0] - dp[-1, 0])
)
kern_v = vp.sca.create_kernel(desc_v, desc_o=dv_w2[0, 0])
kernels['next_velocity_v'] = kern_v
def draw(u, v, ax, ts):
plt.cla()
ax.set_title('time : {:.3f}'.format(ts * DT * PLOT_INTERVAL))
ax.imshow(
vp.sqrt(u * u + v * v).get(),
vmin=0, vmax=2.,
cmap='cividis',
extent=[0, LX, LY, 0]
)
def cfd():
u_w1, v_w1, p_w1, u_w2, v_w2, p_w2, s = init()
coef1 = [
1 - (2 * DT / Re) * (1 / (DX * DX) + 1 / (DY * DY)),
- DT / (2 * DX),
- DT / (2 * DY),
DT / (Re * DX * DX),
DT / (Re * DY * DY)
]
coef2 = [
1 / (2 * DT * DX),
1 / (2 * DT * DY)
]
coef3 = [
DY * DY / (2 * (DX * DX + DY * DY)),
DX * DX / (2 * (DX * DX + DY * DY)),
-(DX * DX * DY * DY) / (2 * (DX * DX + DY * DY))
]
coef4 = [
- DT / (2 * DX),
- DT / (2 * DY)
]
velocity_kernels = {}
poisson_kernels = [{}, {}]
set_temporary_velocity_kernel(u_w1, v_w1, u_w2, v_w2, coef1, velocity_kernels)
set_poisson_kernel(u_w2, v_w2, p_w1, p_w2, s, coef2, coef3, poisson_kernels[0])
set_poisson_kernel(u_w2, v_w2, p_w2, p_w1, s, coef2, coef3, poisson_kernels[1])
set_next_velocity_kernel(u_w2, v_w2, p_w1, u_w1, v_w1, coef4, velocity_kernels)
fig, ax = plt.subplots()
u_for_plot = []
v_for_plot = []
u_for_plot.append(u_w1.get())
v_for_plot.append(v_w1.get())
x, y = vp.linspace(0, LX, NX), vp.linspace(0, LY, NY)
xx, yy = vp.meshgrid(x, y)
for ts in range(1, NT + 1):
# temporary velocity
u = velocity_kernels['temporary_u'].execute()
v = velocity_kernels['temporary_v'].execute()
bnd_velocity(u, v, u_w1, v_w1)
# poisson
poisson_kernels[0]['poisson_right_hand'].execute()
for i in range(MAX_ITER_JACOBI):
p = poisson_kernels[i % 2]['poisson_solve_p'].execute()
p_tmp = p_w1 if i % 2 == 0 else p_w2
bnd_pressure(p, p_tmp)
err = vp.linalg.norm(p - p_tmp) / vp.linalg.norm(p)
if err < TOL_JACOBI:
break
p_w1[...] = p
# next velocity
u = velocity_kernels['next_velocity_u'].execute()
v = velocity_kernels['next_velocity_v'].execute()
bnd_velocity(u, v, u_w2, v_w2)
# keep values for plot
if ts % PLOT_INTERVAL == 0:
print(ts)
u_for_plot.append(u.get())
v_for_plot.append(v.get())
def animate(i):
draw(u_for_plot[i], v_for_plot[i], ax, i)
def animation_init():
cs = ax.imshow(vp.sqrt(u*u + v*v), vmin=0, vmax=2., cmap='cividis')
plt.colorbar(cs, label='Speed', orientation='vertical')
plt.xlabel("x[m]")
plt.ylabel("y[m]")
animation.FuncAnimation(
fig,
animate,
interval=100,
frames=int(NT / PLOT_INTERVAL + 1),
repeat=False,
init_func=animation_init
).save(
"cfd.gif",
writer='pillow'
)
if __name__ == '__main__':
assert OBJ_X_END > OBJ_X_BEGIN
assert OBJ_Y_END > OBJ_Y_BEGIN
cfd()
シミュレーション結果
各格子点の速さの時間的変化を以下に示します。
付録
離散方程式
上付き文字はタイムステップを示し、下付き文字はx,y座標を示します。
方程式 (A):
、 はそれぞれx軸、y軸の流速を示します。
方程式 (B):
ここで、 はポアソン方程式の右辺を示します。
方程式 (C):