サンプル: 波動シミュレーション

目的

3 m \times 3 m の2次元平面で波の伝播をシミュレートします。

物理

支配方程式

\frac{\partial^2}{\partial t^2} u=c^2\left(\frac{\partial^2}{\partial x^2}+\frac{\partial^2}{\partial y^2}\right)u

変数

説明

u

振幅

t

時間 [s]

x

x座標 [m]

y

y座標 [m]

定数

説明

c

伝播速度

1.0 [m/sec]

境界条件

すべての境界における振幅は常に0です。

プログラム

import nlcpy as vp
from matplotlib import pyplot as plt
from matplotlib import animation

LX = 3
LY = 3
NX = 300
NY = 300
DT = .005
MT = 3
KP = .02
C = 1.
DX = LX / (NX + 1)
DY = LY / (NY + 1)
MX = NX + 2
MY = NY + 2
DTYPE = 'float32'
XX, YY = vp.meshgrid(
    vp.linspace(0, LX, MX),
    vp.linspace(0, LY, MY)
)
SURFACE = None


def gaussian(x, y, mu, sigma):
    distribution = 1 / vp.sqrt(2 * vp.pi * sigma * sigma) * \
        vp.exp(-(x - mu) ** 2 / (2 * sigma * sigma)) * \
        vp.exp(-(y - mu) ** 2 / (2 * sigma * sigma))
    return distribution / vp.absolute(distribution.max())


def initialize(grid):
    grid[...] = 0
    grid[...] += gaussian(XX, YY, 2 * LX / 3, .2) * 1.5
    grid[...] += gaussian(XX, YY, 1 * LX / 3, .2) * 1.5


def create_stencil_kernel(g_tm1, g_t, g_tp1, coef):
    dg_tm1, dg_t, dg_tp1 = vp.sca.create_descriptor((g_tm1, g_t, g_tp1))
    desc = (dg_t[0, 0] * coef[0] -
            dg_tm1[0, 0] * coef[1] +
            (dg_t[0, -1] + dg_t[0, 1]) * coef[2] +
            (dg_t[-1, 0] + dg_t[1, 0]) * coef[3])
    return vp.sca.create_kernel(desc, desc_o=dg_tp1[0, 0])


def wave_equation():
    grid0 = vp.sca.create_optimized_array((MY, MX), dtype=DTYPE)
    grid1 = vp.sca.create_optimized_array((MY, MX), dtype=DTYPE)
    grid2 = vp.sca.create_optimized_array((MY, MX), dtype=DTYPE)

    coef = [
        (1 - (C * C * DT * DT) / (DX * DX) -
         (C * C * DT * DT) / (DY * DY)) * 2,
        1,
        (C * C * DT * DT) / (DX * DX),
        (C * C * DT * DT) / (DY * DY)
    ]

    print("initializing grid...", end="", flush=True)
    initialize(grid0)
    grid1[...] = grid0[...]
    grid2[...] = grid0[...]
    print("done", flush=True)

    print("creating stencil kernel...", end="", flush=True)
    kernels = []
    kernels.append(create_stencil_kernel(grid0, grid1, grid2, coef))
    kernels.append(create_stencil_kernel(grid1, grid2, grid0, coef))
    kernels.append(create_stencil_kernel(grid2, grid0, grid1, coef))
    print("done", flush=True)

    fig = plt.figure(figsize=(6, 6))
    ax = fig.add_subplot(111, projection='3d')
    grid_for_plot = [grid0.get(), ]
    print("computing difference method...", end="", flush=True)
    for i in range(int(MT/DT)):
        grid_current = kernels[i % 3].execute()
        if i % int(KP/DT) == 0:
            grid_for_plot.append(grid_current.get())
    print("done", flush=True)

    def animate(i):
        global SURFACE
        if SURFACE:
            ax.collections.remove(SURFACE)
        SURFACE = ax.plot_surface(
            XX, YY, grid_for_plot[i], rstride=10, cstride=10,
            cmap=plt.cm.coolwarm, vmax=1, vmin=-1)
        ax.set_title('time : {:2.2f} [sec]'.format(i * KP))

    def animate_init():
        ax.set_xlabel("x[m]")
        ax.set_ylabel("y[m]")
        ax.set_zlim(-2, 2)

    print("creating animation...", end="", flush=True)
    animation.FuncAnimation(
        fig,
        animate,
        frames=int(MT / KP + 1),
        interval=50,
        repeat=False,
        init_func=animate_init
    ).save(
        "wave_simulation.gif",
        writer='pillow',
    )
    print("done", flush=True)

    for kern in kernels:
        vp.sca.destroy_kernel(kern)


if __name__ == "__main__":
    wave_equation()

シミュレーション結果

../_images/wave_simulation.gif