[ English | Japanese ]
ASL Basic Functions Vol.3 (for C)
Chapter 1 INTRODUCTION
- 1.1
- OVERVIEW
- 1.1.1
- Introduction to The Advanced Scientific Library ASL C interface
- 1.1.2
- Distinctive Characteristics of ASL C interface
- 1.2
- KINDS OF LIBRARIES
- 1.3
- ORGANIZATION
- 1.3.1
- Introduction
- 1.3.2
- Organization of Function Description
- 1.3.3
- Contents of Each Item
- 1.4
- FUNCTION NAMES
- 1.5
- NOTES
Chapter 2 FOURIER TRANSFORMS AND THEIR APPLICATIONS
- 2.1
- INTRODUCTION
- 2.1.1
- Notes
- 2.1.2
- Algorithms Used
- 2.1.2.1
- One-Dimensional (Continuous) Fourier Transforms
- 2.1.2.2
- Multidimensional (Continuous) Fourier Transforms
- 2.1.2.3
- One-Dimensional Fourier Transform
- 2.1.2.4
- Multidimensional Fourier Transforms
- 2.1.2.5
- Fast Fourier transform
- 2.1.2.6
- One-Dimensional (Continuous) Convolutions and One-Dimensional (Continuous) Correlations
- 2.1.2.7
- One-Dimensional Discrete Convolution and One-Dimensional Discrete Correlation
- 2.1.2.8
- Multidimensional (Continuous) Convolution and Multidimensional (Continuous) Correlation
- 2.1.2.9
- Power Spectrum
- 2.1.2.10
- Laplace Transform
- 2.1.2.11
- Wavelet transform
- 2.1.3
- Reference Bibliography
- 2.2
- ONE-DIMENSIONAL COMPLEX FOURIER TRANSFORM (REAL ARGUMENT TYPE)
- 2.3
- ONE-DIMENSIONAL COMPLEX FOURIER TRANSFORM (COMPLEX ARGUMENT TYPE)
- 2.4
- ONE-DIMENSIONAL REAL FOURIER TRANSFORM
- 2.5
- MULTIPLE ONE-DIMENSIONAL COMPLEX FOURIER TRANSFORM (REAL ARGUMENT TYPE)
- 2.6
- MULTIPLE ONE-DIMENSIONAL COMPLEX FOURIER TRANSFORM (COMPLEX ARGUMENT TYPE)
- 2.7
- MULTIPLE ONE-DIMENSIONAL REAL FOURIER TRANSFORM
- 2.8
- TWO-DIMENSIONAL COMPLEX FOURIER TRANSFORM (REAL ARGUMENT TYPE)
- 2.9
- TWO-DIMENSIONAL COMPLEX FOURIER TRANSFORM (COMPLEX ARGUMENT TYPE)
- 2.10
- TWO-DIMENSIONAL REAL FOURIER TRANSFORM
- 2.11
- THREE-DIMENSIONAL COMPLEX FOURIER TRANSFORM (REAL ARGUMENT TYPE)
- 2.12
- THREE-DIMENSIONAL COMPLEX FOURIER TRANSFORM (COMPLEX ARGUMENT TYPE)
- 2.13
- THREE-DIMENSIONAL REAL FOURIER TRANSFORM
- 2.14
- CONVOLUTIONS
- 2.15
- CORRELATIONS
- 2.16
- POWER SPECTRUM ANALYSIS
- 2.17
- LAPLACE TRANSFORM
- 2.18
- WAVELET TRANSFORM
- 2.18.1
- ASL_dfwth1, ASL_rfwth1
Haar Function Generation- 2.18.2
- ASL_dfwthr, ASL_rfwthr
Wavelet Transform According to Haar Functions- 2.18.3
- ASL_dfwths, ASL_rfwths
Inverse Wavelet Transform According to Haar Functions- 2.18.4
- ASL_dfwth2, ASL_rfwth2
Haar Function Generation (Equally Spaced Sampling Data)- 2.18.5
- ASL_dfwtht, ASL_rfwtht
Wavelet Transform According to Haar Functions (Equally Spaced Sampling Data)- 2.18.6
- ASL_dfwthi, ASL_rfwthi
Inverse Wavelet Transform According to Haar Functions (Equally Spaced Sampling Data)- 2.18.7
- ASL_dfwtmf, ASL_rfwtmf
Mexican Hut Function Computation- 2.18.8
- ASL_dfwtmt, ASL_rfwtmt
Wavelet Transform According to Mexican Hut Functions- 2.18.9
- ASL_dfwtff, ASL_rfwtff
French Hut Function Computation- 2.18.10
- ASL_dfwtft, ASL_rfwtft
Wavelet Transform According to French Hut Function
Appendix
- Appendix A
- MACHINE CONSTANTS USED IN ASL C INTERFACE
- A.1
- Units for Determining Error
- A.2
- Maximum and Minimum Values of Floating Point Data