[ English | Japanese ]
ASL Shared Memory Parallel Functions (for C)
Contents |
---|
Chapter 1 INTRODUCTION
- 1.1
- OVERVIEW
- 1.1.1
- Introduction to The Advanced Scientific Library ASL C interface
- 1.1.2
- Distinctive Characteristics of ASL C interface
- 1.2
- KINDS OF LIBRARIES
- 1.3
- ORGANIZATION
- 1.3.1
- Introduction
- 1.3.2
- Organization of Function Description
- 1.3.3
- Contents of Each Item
- 1.4
- FUNCTION NAMES
- 1.5
- ASL C INTERFACE SHARED MEMORY PARALLEL FUNCTIONS
- 1.5.1
- Overview of Shared Memory Parallel Functions
- 1.5.2
- Performance Improvement Due to Parallel Functions
- 1.5.3
- General Notes Concerning the Use of shared memory Parallel Functions
- 1.6
- NOTES
Chapter 2 BASIC MATRIX ALGEBRA
- 2.1
- INTRODUCTION
- 2.1.1
- Notes
- 2.1.2
- Algorithms Used
- 2.1.2.1
- Matrix Multiplication
- 2.2
- BASIC MATRIX ALGEBRA
- 2.2.1
- ASL_qam1mu, ASL_pam1mu
Multiplying Real Matrices (Two-Dimensional Array Type)- 2.2.2
- ASL_qam1mm, ASL_pam1mm
Multiplying Real Matrices (Two-Dimensional Array Type) (C=C± AB)- 2.2.3
- ASL_qam1mt, ASL_pam1mt
Multiplying Real Matrices (Two-Dimensional Array Type) (C=C± ABT)- 2.2.4
- ASL_qam1tm, ASL_pam1tm
Multiplying Real Matrices (Two-Dimensional Array Type) (C=C± ATB)- 2.2.5
- ASL_qam1tt, ASL_pam1tt
Multiplying Real Matrices (Two-Dimensional Array Type) (C=C± ATBT)- 2.2.6
- ASL_ham1mm, ASL_gam1mm
Multiplying Complex Matrices (Two-Dimensional Array Type) (Real Argument Type) (C=C± AB)- 2.2.7
- ASL_ham1mh, ASL_gam1mh
Multiplying Complex Matrices (Two-Dimensional Array Type) (Real Argument Type) (C=C± AB*)- 2.2.8
- ASL_ham1hm, ASL_gam1hm
Multiplying Complex Matrices (Two-Dimensional Array Type) (Real Argument Type) (C=C± A*B)- 2.2.9
- ASL_ham1hh, ASL_gam1hh
Multiplying Complex Matrices (Two-Dimensional Array Type) (Real Argument Type) (C=C± A*B*)- 2.2.10
- ASL_han1mm, ASL_gan1mm
Multiplying Complex Matrices (Two-Dimensional Array Type) (Complex Argument Type) (C=C± AB)- 2.2.11
- ASL_han1mh, ASL_gan1mh
Multiplying Complex Matrices (Two-Dimensional Array Type) (Complex Argument Type) (C=C± AB*)- 2.2.12
- ASL_han1hm, ASL_gan1hm
Multiplying Complex Matrices (Two-Dimensional Array Type) (Complex Argument Type) (C=C± A*B)- 2.2.13
- ASL_han1hh, ASL_gan1hh
Multiplying Complex Matrices (Two-Dimensional Array Type) (Complex Argument Type) (C=C± A*B*)Chapter 3 SIMULTANEOUS LINEAR EQUATIONS (DIRECT METHOD)
- 3.1
- INTRODUCTION
- 3.1.1
- Methods of using functions
- 3.1.2
- Notes
- 3.1.3
- Algorithms Used
- 3.1.3.1
- Solution of Simultaneous Linear Equations
- 3.1.3.2
- LU Decomposition (Gauss Method)
- 3.1.4
- Reference Bibliography
- 3.2
- REAL MATRIX (TWO-DIMENSIONAL ARRAY TYPE)
- 3.3
- COMPLEX MATRIX (TWO-DIMENSIONAL ARRAY TYPE) (REAL ARGUMENT TYPE)
- 3.4
- COMPLEX MATRIX (TWO-DIMENSIONAL ARRAY TYPE) (COMPLEX ARGUMENT TYPE)
- 3.5
- REAL SYMMETRIC MATRIX (TWO-DIMENSIONAL ARRAY TYPE) (UPPER TRIANGULAR TYPE)
- 3.6
- REAL SYMMETRIC MATRIX (TWO-DIMENSIONAL ARRAY TYPE, LOWER TRIANGULAR TYPE) (NO PIVOTING)
- 3.7
- HERMITIAN MATRIX (TWO-DIMENSIONAL ARRAY TYPE) (UPPER TRIANGULAR TYPE) (REAL ARGUMENT TYPE)
- 3.8
- HERMITIAN MATRIX (TWO-DIMENSIONAL ARRAY TYPE) (UPPER TRIANGULAR TYPE) (REAL ARGUMENT TYPE) (NO PIVOTING)
- 3.9
- HERMITIAN MATRIX (TWO-DIMENSIONAL ARRAY TYPE) (UPPER TRIANGULAR TYPE) (COMPLEX ARGUMENT
TYPE)- 3.10
- HERMITIAN MATRIX (TWO-DIMENSIONAL ARRAY TYPE) (UPPER TRIANGULAR TYPE) (COMPLEX ARGUMENT TYPE) (NO PIVOTING)
Chapter 4 SIMULTANEOUS LINEAR EQUATIONS (ITERATIVE METHOD)
- 4.1
- INTRODUCTION
- 4.1.1
- Notes
- 4.1.2
- Algorithms Used
- 4.1.2.1
- Nonstationary iterative method (for Symmetric Matrix only)
- 4.1.2.2
- Nonstationary iterative method (for Asymmetric Matrix)
- 4.1.2.3
- Preconditioned Iterative Method
- 4.1.2.4
- Preconditioning Methods
- 4.1.2.5
- Advanced Techniques for Improving Performance
- 4.1.3
- Reference Bibliography
- 4.2
- SPARSE MATRIX--NONSTATIONARY ITERATIVE METHODS (BASIC ITERATION METHOD FUNCTIONS)
- 4.2.1
- ASL_qxe010, ASL_pxe010
Positive Definite Symmetric Sparse Matrix (ELLPACK Format) (CG method)- 4.2.2
- ASL_qxe020, ASL_pxe020
Asymmetric Sparse Matrix (ELLPACK Format) (CGS method)- 4.2.3
- ASL_qxe030, ASL_pxe030
Asymmetric Sparse Matrix (ELLPACK Format) (BiCGSTAB method)- 4.2.4
- ASL_qxe040, ASL_pxe040
Asymmetric Sparse Matrix (ELLPACK Format) (GMRES (m) method)Chapter 5 EIGENVALUES AND EIGENVECTORS
- 5.1
- INTRODUCTION
- 5.1.1
- Notes
- 5.1.2
- Algorithms Used
- 5.1.2.1
- Transforming a real symmetric matrix to a real symmetric tridiagonal matrix
- 5.1.2.2
- Transforming a Hermitian matrix to a real symmetric tridiagonal matrix
- 5.1.2.3
- The Householder transformation by block algorithm
- 5.1.2.4
- QR method
- 5.1.2.5
- root-free QR method
- 5.1.2.6
- Bisection method
- 5.1.2.7
- Accumulation of similarity (unitary) transformation by block algorithm
- 5.1.2.8
- Inverse iteration method
- 5.1.2.9
- Generalized eigenvalue problem
- 5.1.3
- Reference Bibliography
- 5.2
- REAL SYMMETRIC MATRIX (TWO-DIMENSIONAL ARRAY TYPE) (UPPER TRIANGULAR TYPE)
- 5.2.1
- ASL_qcsmaa, ASL_pcsmaa
All Eigenvalues and All Eigenvectors of a Real Symmetric Matrix- 5.2.2
- ASL_qcsman, ASL_pcsman
All Eigenvalues of a Real Symmetric Matrix- 5.2.3
- ASL_qcsmss, ASL_pcsmss
Eigenvalues and Eigenvectors of a Real Symmetric Matrix- 5.2.4
- ASL_qcsmsn, ASL_pcsmsn
Eigenvalues of a Real Symmetric Matrix- 5.3
- HERMITIAN MATRIX (TWO-DIMENSIONAL ARRAY TYPE) (UPPER TRIANGULAR TYPE) (REAL ARGUMENT TYPE)
- 5.4
- HERMITIAN MATRIX (TWO-DIMENSIONAL ARRAY TYPE) (UPPER TRIANGULAR TYPE) (COMPLEX ARGUMENT TYPE)
- 5.5
- GENERALIZED EIGENVALUE PROBLEM FOR A REAL SYMMETRIC MATRIX (TWO-DIMENSIONAL ARRAY TYPE) (UPPER TRIANGULAR TYPE) (Ax = λBx)
- 5.5.1
- ASL_qcgsaa, ASL_pcgsaa
All Eigenvalues and All Eigenvectors of a Real Symmetric Matrix (Generalized Eigenvalue Problem Ax = λBx, B: Positive)- 5.5.2
- ASL_qcgsan, ASL_pcgsan
All Eigenvalues of a Real Symmetric Matrix (Generalized Eigenvalue Problem Ax = λBx, B: Positive)- 5.5.3
- ASL_qcgsss, ASL_pcgsss
Eigenvalues and Eigenvectors of a Real Symmetric Matrix (Generalized Eigenvalue Problem Ax = λBx, B: Positive)- 5.5.4
- ASL_qcgssn, ASL_pcgssn
Eigenvalues of a Real Symmetric Matrix (Generalized Eigenvalue Problem Ax = λBx, B: Positive)- 5.6
- GENERALIZED EIGENVALUE PROBLEM FOR REAL SYMMETRIC MATRICES (TWO-DIMENSIONAL ARRAY TYPE) (UPPER TRIANGULAR TYPE) (ABx = λx)
- 5.7
- GENERALIZED EIGENVALUE PROBLEM FOR REAL SYMMETRIC MATRICES (TWO-DIMENSIONAL ARRAY TYPE) (UPPER TRIANGULAR TYPE) (BAx = λx)
- 5.8
- GENERALIZED EIGENVALUE PROBLEM (Az = λBz) FOR HERMITIAN MATRICES (TWO-DIMENSIONAL ARRAY TYPE) (UPPER TRIANGULAR TYPE) (REAL ARGUMENT TYPE)
- 5.9
- GENERALIZED EIGENVALUE PROBLEM (ABz = λz) FOR HERMITIAN MATRICES (TWO-DIMENSIONAL ARRAY TYPE) (UPPER TRIANGULAR TYPE) (REAL ARGUMENT TYPE)
- 5.10
- GENERALIZED EIGENVALUE PROBLEM (BAz = λz) FOR HERMITIAN MATRICES (TWO-DIMENSIONAL ARRAY TYPE) (UPPER TRIANGULAR TYPE) (REAL ARGUMENT TYPE)
Chapter 6 FOURIER TRANSFORMS AND THEIR APPLICATIONS
- 6.1
- INTRODUCTION
- 6.1.1
- Notes
- 6.1.2
- Algorithms Used
- 6.1.2.1
- Two-dimensional complex Fourier transform
- 6.1.2.2
- Two-dimensional real Fourier transform
- 6.1.2.3
- Three-dimensional complex Fourier transform
- 6.1.2.4
- Three-dimensional real Fourier transform
- 6.1.3
- Reference Bibliography
- 6.2
- MULTIPLE ONE-DIMENSIONAL COMPLEX FOURIER TRANSFORM (REAL ARGUMENT TYPE)
- 6.3
- MULTIPLE ONE-DIMENSIONAL COMPLEX FOURIER TRANSFORM (COMPLEX ARGUMENT TYPE)
- 6.4
- MULTIPLE ONE-DIMENSIONAL REAL FOURIER TRANSFORM
- 6.5
- TWO-DIMENSIONAL COMPLEX FOURIER TRANSFORM (REAL ARGUMENT TYPE)
- 6.6
- TWO-DIMENSIONAL COMPLEX FOURIER TRANSFORM (COMPLEX ARGUMENT TYPE)
- 6.7
- TWO-DIMENSIONAL REAL FOURIER TRANSFORM
- 6.8
- THREE-DIMENSIONAL COMPLEX FOURIER TRANSFORM (REAL ARGUMENT TYPE)
- 6.9
- THREE-DIMENSIONAL COMPLEX FOURIER TRANSFORM (COMPLEX ARGUMENT TYPE)
- 6.10
- THREE-DIMENSIONAL REAL FOURIER TRANSFORM
- 6.11
- CONVOLUTIONS
- 6.12
- CORRELATIONS
- 6.13
- POWER SPECTRUM ANALYSIS
Chapter 7 SORTING
- 7.1
- INTRODUCTION
- 7.1.1
- Notes
- 7.1.2
- Algorithms Used
- 7.1.3
- Reference Bibliography
- 7.2
- SORTING
Appendix
- Appendix A
- METHODS OF HANDLING ARRAY DATA
- A.1
- Methods of handling array data corresponding to matrix
- A.2
- Data storage modes
- A.2.1
- Real matrix (two-dimensional array type)
- A.2.2
- Complex matrix
- A.2.3
- Real symmetric matrix and positive symmetric matrix
- A.2.4
- Hermitian matrix
- A.2.5
- Random sparse matrix (For symmetric matrix only)
- A.2.6
- Random sparse matrix
- Appendix B
- MACHINE CONSTANTS USED IN ASL C INTERFACE
- B.1
- Units for Determining Error
- B.2
- Maximum and Minimum Values of Floating Point Data