[ English | Japanese ]

ASL Basic Functions Vol.4 (for Fortran)

Go to Top

Chapter 1  INTRODUCTION

1.1
OVERVIEW
1.1.1
Introduction to The Advanced Scientific Library ASL
1.1.2
Distinctive Characteristics of ASL
1.2
KINDS OF LIBRARIES
1.3
ORGANIZATION
1.3.1
Introduction
1.3.2
Organization of Subroutine Description
1.3.3
Contents of Each Item
1.4
SUBROUTINE NAMES
1.5
NOTES

Go to Top

Chapter 2  DIFFERENTIAL EQUATIONS AND THEIR APPLICATIONS

2.1
INTRODUCTION
2.1.1
Notes
2.1.1.1
Ordinary Differential Equations (Initial Value Problems)
2.1.1.2
Ordinary Differential Equations (Boundary Value Problems)
2.1.1.3
Integral Equations
2.1.2
Algorithms Used
2.1.2.1
Ordinary Differential Equations (Initial Value Problems)
2.1.2.2
Ordinary Differential Equations (Boundary Value Problems)
2.1.2.3
Integral Equations
2.1.2.4
Partial Differential Equations
2.1.3
Reference Bibliography
2.2
ORDINARY DIFFERENTIAL EQUATIONS (INITIAL VALUE PROBLEMS)
2.2.1
DKSNCS, RKSNCS
High-Order Simultaneous Ordinary Differential Equations (Speed Priority)
2.2.2
DKSNCA, RKSNCA
High-Order Simultaneous Ordinary Differential Equations (Precision Priority)
2.2.3
DKINCT, RKINCT
Implicit Simultaneous Ordinary Differential Equations
2.2.4
DKSSCA, RKSSCA
Stiff Problem High-Order Simultaneous Ordinary Differential Equations
2.2.5
DKFNCS, RKFNCS
Simultaneous Ordinary Differential Equations of the 1st Order
2.2.6
DKHNCS, RKHNCS
High-Order Ordinary Differential Equation
2.2.7
DKMNCN, RKMNCN
Ordinary Differential Equation of the Type My''+Cy'+Ky=p (x)
2.3
ORDINARY DIFFERENTIAL EQUATIONS (BOUNDARY VALUE PROBLEMS)
2.3.1
DOSNNV, ROSNNV
High-Order Simultaneous Ordinary Differential Equations (Numerical Boundary Conditions)
2.3.2
DOSNNF, ROSNNF
High-Order Simultaneous Ordinary Differential Equations (Function Boundary Conditions)
2.3.3
DOFNNV, ROFNNV
First-Order Simultaneous Ordinary Differential Equations (Numerical Boundary Conditions)
2.3.4
DOFNNF, ROFNNF
First-Order Simultaneous Ordinary Differential Equations (Function Boundary Conditions)
2.3.5
DOHNNV, ROHNNV
High-Order Ordinary Differential Equation (Numerical Boundary Conditions)
2.3.6
DOHNNF, ROHNNF
High-Order Ordinary Differential Equation (Function Boundary Conditions)
2.3.7
DOHNLV, ROHNLV
High-Order Linear Ordinary Differential Equation
2.3.8
DOLNLV, ROLNLV
Second-Order Linear Ordinary Differential Equation
2.4
INTEGRAL EQUATIONS
2.4.1
DOIEF2, ROIEF2
Fredholm's Integral Equation of the Second Kind
2.4.2
DOIEV1, ROIEV1
Volterra's Integral Equation of the First Kind
2.5
PARTIAL DIFFERENTIAL EQUATIONS
2.5.1
DOPDH2, ROPDH2
Two-Dimensional Inhomogeneous Helmholtz Equation
2.5.2
DOPDH3, ROPDH3
Three-Dimensional Inhomogeneous Helmholtz Equation

Go to Top

Chapter 3  NUMERICAL DIFFERENTIALS

3.1
INTRODUCTION
3.1.1
Notes
3.1.2
Algorithms Used
3.1.2.1
Richardson's extrapolation
3.1.2.2
Numerical differentials of a function
3.1.2.3
Gradient vector of a function of many variables
3.1.2.4
Hessian matrix of a function of multiple variables
3.1.2.5
Jacobian matrix of a function of multiple variables
3.1.3
Reference Bibliography
3.2
NUMERICAL DIFFERENTIALS
3.2.1
DQFODX, RQFODX
Numerical Differentials of a Function
3.2.2
DQMOGX, RQMOGX
Gradient Vector of a Function of Many Variables
3.2.3
DQMOHX, RQMOHX
Hessian of a Function of Many Variables
3.2.4
DQMOJX, RQMOJX
Jacobian of Multiple Function of Many Variables

Go to Top

Chapter 4  NUMERICAL INTEGRATION

4.1
INTRODUCTION
4.1.1
Notes
4.1.2
Algorithms Used
4.1.2.1
Adaptive Newton-Cotes rule (Integration of arbitrary functions)
4.1.2.2
Gauss-Kronrod Method
4.1.2.3
Clenshaw-Curtis method (functions having a weight function)
4.1.2.4
varepsilon -algorithm
4.1.2.5
Double exponential formula (integrating a function having endpoint or interior-point singularities)
4.1.2.6
Integrating an oscillatory function over an infinite interval
4.1.2.7
Multi-dimensional integration over a finite interval
4.1.2.8
Integral of the product of arbitrary function and special functions
4.1.3
Reference Bibliography
4.2
INTEGRATION OVER A FINITE INTERVAL
4.2.1
DHEMNL, RHEMNL
Arbitrary Function
4.2.2
DHNSNL, RHNSNL
Smooth Function
4.2.3
DHNOFL, RHNOFL
Function of the Type f (x) (sinωx or cosωx)
4.2.4
DHNEFL, RHNEFL
Function of the Type f (x) ((x-a) α (b-x) β log (x-a) γ log (b-x) δ) (a<x<b; γ, δ=0, 1)
4.2.5
DHNIFL, RHNIFL
Function of the Type f (x) (1/ (x-c) )
4.2.6
DHNPNL, RHNPNL
General Oscillatory or Peak-Type Function
4.2.7
DHNENL, RHNENL
General Function Having an Endpoint Singularity
4.2.8
DHNINL, RHNINL
General Function Having Interior-Point Singularities
4.2.9
DHNANL, RHNANL
Singular Function for which Singularity Information is Unknown
4.2.10
DHBDFS, RHBDFS
Integral of Product with any Function f (x) and Bessel Function J0 (x)
4.2.11
DHBSFC, RHBSFC
Integral of the Product of Chebyshev Polynomial and Bessel Function of the Order 0
4.3
INTEGRATION OVER A SEMI-INFINITE INTERVAL
4.3.1
DHEMNH, RHEMNH
Arbitrary Function
4.3.2
DHNOFH, RHNOFH
Function of the Type f (x) (sinωx or cosωx)
4.3.3
DHNENH, RHNENH
General Function Having an Endpoint Singularity
4.3.4
DHNINH, RHNINH
General Function Having Interior-Point Singularities
4.4
INTEGRATION OVER A FULLY INFINITE INTERVAL
4.4.1
DHEMNI, RHEMNI
Arbitrary Function
4.4.2
DHNOFI, RHNOFI
Function of the Type f (x) (sinωx or cosωx)
4.4.3
DHNINI, RHNINI
Function Having Interior-Point Singularities
4.4.4
DH2INT, RH2INT
Function of the Type e^-x2f (x)
4.5
INTEGRATION OVER A TWO-DIMENSIONAL FINITE INTERVAL
4.5.1
DHNRNM, RHNRNM
Two-Dimensional Integration over a Rectangular Area
4.5.2
DHNFNM, RHNFNM
Two-Dimensional Integration over an Area Indicated by the Function
4.6
MULTI-DIMENSIONAL INTEGRATION OVER A FINITE INTERVAL
4.6.1
DHNRML, RHNRML
Multi-Dimensional Integration over a Hypercubic Space
4.6.2
DHNFML, RHNFML
Multi-Dimensional Integration over a Space Indicated by a Function

Go to Top

Chapter 5  APPROXIMATION AND INTERPOLATION

5.1
INTRODUCTION
5.1.1
Notes
5.1.2
Algorithms Used
5.1.2.1
Least squares approximation orthogonal polynomials
5.1.2.2
Nonlinear least square method
5.1.2.3
Two-dimensional arbitrary data least squares approximation polynomials
5.1.2.4
Two-dimensional lattice data least squares approximation polynomials
5.1.2.5
Unequally spaced discrete point interpolation value
5.1.2.6
Unequally spaced discrete point interpolation value and interpolation coefficients
5.1.2.7
Discrete point interpolation value on two-dimensional cross section lines
5.1.2.8
Discrete point interpolation value on two-dimensional lattice
5.1.2.9
Chebyshev approximation
5.1.3
Reference Bibliography
5.2
INTERPOLATION
5.2.1
DPDOPL, RPDOPL
Unequally Spaced Discrete Point Interpolation Value
5.2.2
DPDAPN, RPDAPN
Unequally Spaced Discrete Point Interpolation Value and Interpolation Coefficients
5.3
SURFACE INTERPOLATION
5.3.1
DPLOPL, RPLOPL
Discrete Point Interpolation Value on Two-Dimensional Cross Section Lines
5.3.2
DPGOPL, RPGOPL
Discrete Point Interpolation Value on a Two-Dimensional Lattice
5.4
LEAST SQUARES APPROXIMATION
5.4.1
DNDAAO, RNDAAO
Least Squares Approximation Orthogonal Polynomial Having Automatically Determined Degree
5.4.2
DNDAPO, RNDAPO
Least Squares Approximation Orthogonal Polynomials
5.4.3
DNDANL, RNDANL
Least Squares Approximation Nonlinear Functions
5.5
LEAST SQUARES SURFACE APPROXIMATION
5.5.1
DNRAPL, RNRAPL
Two-Dimensional Arbitrary Data Least Squares Approximation Polynomial
5.5.2
DNGAPL, RNGAPL
Two-Dimensional Lattice Data Least Squares Approximation Polynomial
5.6
CHEBYSHEV APPROXIMATION
5.6.1
DNCBPO, RNCBPO
Chebyshev Approximation

Go to Top

Chapter 6  SPLINE FUNCTIONS

6.1
INTRODUCTION
6.1.1
Notes
6.1.2
Algorithms Used
6.1.2.1
Cubic aperiodic spline function (inputting endpoint conditions)
6.1.2.2
Cubic periodic spline function
6.1.2.3
Cubic aperiodic spline functions (endpoint condition input is unnecessary)
6.1.2.4
Cubic spline smoothing by specifying a control variable
6.1.2.5
Cubic spline automatic smoothing
6.1.2.6
Cubic spline coefficients (least squares method with specification of knot locations)
6.1.2.7
Cubic spline coefficients (least squares method with knot positions automatically determined)
6.1.2.8
Interpolation values according to cubic spline coefficients
6.1.2.9
Derivatives according to cubic spline coefficients
6.1.2.10
Integrals according to cubic spline coefficients
6.1.2.11
Bicubic spline coefficients
6.1.2.12
Bicubic spline interpolation values
6.1.2.13
Bicubic spline mixed partial derivatives
6.1.2.14
Bicubic spline double integral
6.1.2.15
Plane data interpolation
6.1.2.16
Interpolation using a B-spline function (one-dimensional)
6.1.2.17
Interpolation using a B-spline function (multi-dimensional)
6.1.2.18
B-spline smoothing (one-dimensional data)
6.1.2.19
B-spline smoothing (multi-dimensional data)
6.1.3
Reference Bibliography
6.2
CUBIC SPLINE (CURVED LINE INTERPOLATION)
6.2.1
DGISPC, RGISPC
Interpolation Values and Cubic Spline Coefficients
6.2.2
DGISSC, RGISSC
Smoothed Interpolation Values and Cubic Spline Coefficients
6.2.3
DGISMC, RGISMC
Least Squares Interpolation Values and Cubic Spline Coefficients
6.2.4
DGIDPC, RGIDPC
Derivative Values and Cubic Spline Coefficients
6.2.5
DGIDSC, RGIDSC
Smoothed Derivative Values and Cubic Spline Coefficients
6.2.6
DGIDMC, RGIDMC
Least Squares Method Derivative Values and Cubic Spline Coefficients
6.2.7
DGIIPC, RGIIPC
Integral Values and Cubic Spline Coefficients
6.2.8
DGIISC, RGIISC
Smoothed Integral Value and Cubic Spline Coefficients
6.2.9
DGIIMC, RGIIMC
Least Squares Method Integral Value and Cubic Spline Coefficients
6.2.10
DGICCP, RGICCP
Cubic Spline Coefficients (Endpoint Condition Input Unnecessary)
6.2.11
DGICCQ, RGICCQ
Cubic Spline Coefficients (Endpoint Conditions Are Input)
6.2.12
DGICCR, RGICCR
Cubic Spline Coefficients (Periodic Spline)
6.2.13
DGICCS, RGICCS
Cubic Spline Coefficients (Automatic Smoothing)
6.2.14
DGICCO, RGICCO
Cubic Spline Coefficients (Automatic Smoothing Periodic Conditions)
6.2.15
DGICCT, RGICCT
Cubic Spline Coefficients (Smoothing by Specifying a Control Variable)
6.2.16
DGICCM, RGICCM
Cubic Spline Coefficients (Least Squares Method When Knot Positions are Set Automatically)
6.2.17
DGICCN, RGICCN
Cubic Spline Coefficients (Least Squares Method When Knot Positions are Specified)
6.2.18
DGISCX, RGISCX
Interpolation Values According to Cubic Spline Coefficients
6.2.19
DGIDCY, RGIDCY
Derivative Values According to Cubic Spline Coefficients
6.2.20
DGIICZ, RGIICZ
Integral Value According to Cubic Spline Coefficients
6.3
BICUBIC SPLINE (CURVED SURFACE INTERPOLATION)
6.3.1
DGISXB, RGISXB
Interpolation Values
6.3.2
DGIDYB, RGIDYB
Mixed Partial Derivative Values and Bicubic Spline Coefficients
6.3.3
DGIIZB, RGIIZB
Double Integral Value
6.3.4
DGICBP, RGICBP
Bicubic Spline Coefficients
6.3.5
DGISBX, RGISBX
Interpolation Values According to Bicubic Spline Coefficients
6.3.6
DGIDBY, RGIDBY
Mixed Partial Derivative Values According to Bicubic Spline Coefficients
6.3.7
DGIIBZ, RGIIBZ
Double Integral Value According to Bicubic Spline Coefficients
6.4
PLANE DATA INTERPOLATION
6.4.1
DGISPO, RGISPO
Open Curve Interpolation
6.4.2
DGISPR, RGISPR
Closed Curve Interpolation
6.4.3
DGISSO, RGISSO
Open Curve Smoothed Interpolation
6.4.4
DGISSR, RGISSR
Closed Curve Smoothed Interpolation
6.5
B-SPLINE
6.5.1
DGICBS, RGICBS
B-Spline Calculation
6.5.2
DGISI1, RGISI1
Interpolation Using a B-Spline (One-Dimensional Data)
6.5.3
DGISI2, RGISI2
Interpolation Using a B-Spline (Two-Dimensional Data)
6.5.4
DGISI3, RGISI3
Interpolation Using a B-Spline (Three-Dimensional Data)
6.5.5
DGISS1, RGISS1
B-Spline Smoothing (One-Dimensional Data)
6.5.6
DGISS2, RGISS2
B-Spline Smoothing (Two-Dimensional Data)
6.5.7
DGISS3, RGISS3
B-Spline Smoothing (Three-Dimensional Data)

Go to Top

Appendix

Appendix A
MACHINE CONSTANTS USED IN ASL
A.1
Units for Determining Error
A.2
Maximum and Minimum Values of Floating Point Data