[ English | Japanese ]
ASL Basic Functions Vol.5 (for Fortran)
Contents |
---|
Chapter 1 INTRODUCTION
- 1.1
- OVERVIEW
- 1.1.1
- Introduction to The Advanced Scientific Library ASL
- 1.1.2
- Distinctive Characteristics of ASL
- 1.2
- KINDS OF LIBRARIES
- 1.3
- ORGANIZATION
- 1.3.1
- Introduction
- 1.3.2
- Organization of Subroutine Description
- 1.3.3
- Contents of Each Item
- 1.4
- SUBROUTINE NAMES
- 1.5
- NOTES
Chapter 2 SPECIAL FUNCTIONS
- 2.1
- INTRODUCTION
- 2.1.1
- Notes
- 2.1.2
- Algorithms Used
- 2.1.2.1
- Bessel Functions
- 2.1.2.2
- Modified Bessel Functions
- 2.1.2.3
- Spherical Bessel Functions
- 2.1.2.4
- Functions Related To Bessel Functions
- 2.1.2.5
- Gamma Functions
- 2.1.2.6
- Functions Related To The Gamma Function
- 2.1.2.7
- Elliptic Functions And Elliptic Integrals
- 2.1.2.8
- Indefinite Integrals Of Elementary Functions
- 2.1.2.9
- Associated Legendre Functions
- 2.1.2.10
- Orthogonal Polynomials
- 2.1.2.11
- Mathieu functions of integer orders
- 2.1.2.12
- Langevin function
- 2.1.2.13
- Gauss=Legendre integration formula
- 2.1.2.14
- Zero points of Bessel Functions
- 2.1.2.15
- Positive zero points of the second kind Bessel function
- 2.1.2.16
- Zeta function of Positive definite quadratic form x2 + a y2
- 2.1.2.17
- Di-log function
- 2.1.2.18
- Debye function
- 2.1.2.19
- Normalized Spherical Harmonics
- 2.1.2.20
- Hurwitz Zeta function for a real variable
- 2.1.2.21
- The functions related to the error function
- 2.1.2.22
- Coefficient Calculation Method
- 2.1.2.23
- Method of Calculating Related Special Functions
- 2.1.3
- Reference Bibliography
- 2.2
- BESSEL FUNCTIONS
- 2.2.1
- WIBJ0X, VIBJ0X
Bessel Function of the 1st Kind (Order 0)- 2.2.2
- WIBY0X, VIBY0X
Bessel Function of the 2nd Kind (Order 0)- 2.2.3
- WIBJ1X, VIBJ1X
Bessel Function of the 1st Kind (Order 1)- 2.2.4
- WIBY1X, VIBY1X
Bessel Function of the 2nd Kind (Order 1)- 2.2.5
- DIBJNX, RIBJNX
Bessel Function of the 1st Kind (Integer Order)- 2.2.6
- DIBYNX, RIBYNX
Bessel Function of the 2nd Kind (Integer Order)- 2.2.7
- DIBJMX, RIBJMX
Bessel Function of the 1st Kind (Real Number Order)- 2.2.8
- DIBYMX, RIBYMX
Bessel Function of the 2nd Kind (Real Number Order)- 2.2.9
- ZIBJNZ, CIBJNZ
Bessel Function of the 1st Kind with Complex Variable (Integer Order)- 2.2.10
- ZIBYNZ, CIBYNZ
Bessel Function of the 2nd Kind with Complex Variable (Integer Order)- 2.3
- ZERO POINTS OF THE BESSEL FUNCTIONS
- 2.3.1
- DIZBS0, RIZBS0
Positive Zero Points of the Bessel Function of the 1st Kind (Order 0)- 2.3.2
- DIZBS1, RIZBS1
Positive Zero Points of the Bessel Function of the 1st Kind (Order 1)- 2.3.3
- DIZBSN, RIZBSN
Positive Zero Points of Bessel Function of the 1st Kind (Integer Order)- 2.3.4
- DIZBYN, RIZBYN
Positive Zero Points of the Second Kind Bessel Function- 2.3.5
- DIZBSL, RIZBSL
Positive Zero Points of the Function aJ0 (α) +αJ1 (α)- 2.4
- MODIFIED BESSEL FUNCTIONS
- 2.4.1
- WIBI0X, VIBI0X
Modified Bessel Function of the 1st Kind (Order 0)- 2.4.2
- WIBK0X, VIBK0X
Modified Bessel Function of the 2nd Kind (Order 0)- 2.4.3
- WIBI1X, VIBI1X
Modified Bessel Function of the 1st Kind (Order 1)- 2.4.4
- WIBK1X, VIBK1X
Modified Bessel Function of the 2nd Kind (Order 1)- 2.4.5
- DIBINX, RIBINX
Modified Bessel Function of the 1st Kind (Integer Order)- 2.4.6
- DIBKNX, RIBKNX
Modified Bessel Function of the 2nd Kind (Integer Order)- 2.4.7
- DIBIMX, RIBIMX
Modified Bessel Function of the 1st Kind (Real Number Order)- 2.4.8
- DIBKMX, RIBKMX
Modified Bessel Function of the 2nd Kind (Real Number Order)- 2.4.9
- ZIBINZ, CIBINZ
Modified Bessel Function of the 1st Kind with Complex Variable (Integer Order)- 2.4.10
- ZIBKNZ, CIBKNZ
Modified Bessel Function of the 2nd Kind with Complex Variable (Integer Order)- 2.5
- SPHERICAL BESSEL FUNCTIONS
- 2.5.1
- DIBSJN, RIBSJN
Spherical Bessel Function of the 1st Kind (Integer Order)- 2.5.2
- DIBSYN, RIBSYN
Spherical Bessel Function of the 2nd Kind (Integer Order)- 2.5.3
- DIBSIN, RIBSIN
Modified Spherical Bessel Function of the 1st Kind (Integer Order)- 2.5.4
- DIBSKN, RIBSKN
Modified Spherical Bessel Function of the 2nd Kind (Integer Order)- 2.6
- FUNCTIONS RELATED TO BESSEL FUNCTIONS
- 2.6.1
- ZIBH1N, CIBH1N
Hankel Function of the 1st Kind- 2.6.2
- ZIBH2N, CIBH2N
Hankel Function of the 2nd Kind- 2.6.3
- DIBBER, RIBBER
Kelvin Function bern (x)- 2.6.4
- DIBBEI, RIBBEI
Kelvin Function bein (x)- 2.6.5
- DIBKER, RIBKER
Kelvin Function kern (x)- 2.6.6
- DIBKEI, RIBKEI
Kelvin Function kein (x)- 2.6.7
- WIBH0X, VIBH0X
Struve Function (Order 0)- 2.6.8
- WIBH1X, VIBH1X
Struve Function (Order 1)- 2.6.9
- WIBHY0, VIBHY0
Difference of Struve Function (Order 0) and Bessel Function of the 2nd Kind (Order 0)- 2.6.10
- WIBHY1, VIBHY1
Difference of Struve Function (Order 1) and Bessel Function of the 2nd Kind (Order 1)- 2.6.11
- DIBAIX, RIBAIX
Airy Function Ai (x)- 2.6.12
- DIBBIX, RIBBIX
Airy Function Bi (x)- 2.6.13
- DIBAID, RIBAID
Derived Airy Function Ai' (x)- 2.6.14
- DIBBID, RIBBID
Derived Airy Function Bi' (x)- 2.7
- GAMMA FUNCTIONS
- 2.7.1
- WIGAMX, VIGAMX
Gamma Function with Real Variable- 2.7.2
- WIGLGX, VIGLGX
Logarithmic Gamma Function with Real Variable- 2.7.3
- DIGIG1, RIGIG1
Incomplete Gamma Function of the 1st Kind- 2.7.4
- DIGIG2, RIGIG2
Incomplete Gamma Function of the 2nd Kind- 2.7.5
- ZIGAMZ, CIGAMZ
Gamma Function with Complex Variable- 2.7.6
- ZIGLGZ, CIGLGZ
Logarithmic Gamma Function with Complex Variable- 2.8
- FUNCTIONS RELATED TO THE GAMMA FUNCTION
- 2.9
- ELLIPTIC FUNCTIONS AND ELLIPTIC INTEGRALS
- 2.9.1
- WIECI1, VIECI1
Complete Elliptic Integral of the 1st Kind- 2.9.2
- WIECI2, VIECI2
Complete Elliptic Integral of the 2nd Kind- 2.9.3
- DIEII1, RIEII1
Incomplete Elliptic Integral of the 1st Kind- 2.9.4
- DIEII2, RIEII2
Incomplete Elliptic Integral of the 2nd Kind- 2.9.5
- DIEII3, RIEII3
Incomplete Modified Elliptic Integral- 2.9.6
- DIEII4, RIEII4
Incomplete Elliptic Integral of The Weierstrass Type- 2.9.7
- WIEJAC, VIEJAC
Elliptic Functions of Jacobi- 2.9.8
- WIENMQ, VIENMQ
Nome q and Complete Elliptic Integrals- 2.9.9
- WIETHE, VIETHE
Elliptic Theta Function- 2.9.10
- WIEJZT, VIEJZT
Zeta Function of Jacobi- 2.9.11
- WIEJEP, VIEJEP
Epsilon Function of Jacobi- 2.9.12
- WIEJTE, VIEJTE
Theta Function of Jacobi- 2.9.13
- WIEPAI, VIEPAI
Pi Function- 2.10
- INDEFINITE INTEGRALS OF ELEMENTARY FUNCTIONS
- 2.10.1
- WIIEXP, VIIEXP
Exponential Integral- 2.10.2
- WIILOG, VIILOG
Logarithmic Integral- 2.10.3
- DIISIN, RIISIN
Sine Integral- 2.10.4
- DIICOS, RIICOS
Cosine Integral- 2.10.5
- WIIFSI, VIIFSI
Fresnel Sine Integral- 2.10.6
- WIIFCO, VIIFCO
Fresnel Cosine Integral- 2.10.7
- WIIDAW, VIIDAW
Dawson Integral- 2.10.8
- WIICND, VIICND
Normal Distribution Function- 2.10.9
- WIICNC, VIICNC
Complementary Normal Distribution Function- 2.11
- THE FUNCTIONS RELATED TO THE ERROR FUNCTIONS
- 2.12
- ASSOCIATED LEGENDRE FUNCTIONS
- 2.13
- ORTHOGONAL POLYNOMIALS
- 2.13.1
- DIOPLE, RIOPLE
Legendre Polynomial- 2.13.2
- DIZGLW, RIZGLW
Gauss=Legendre Formula- 2.13.3
- DIOPLA, RIOPLA
Laguerre Polynomial- 2.13.4
- DIOPHE, RIOPHE
Hermite Polynomial- 2.13.5
- DIOPCH, RIOPCH
Chebyshev Polynomial- 2.13.6
- DIOPC2, RIOPC2
Chebyshev Function of the 2nd Kind- 2.13.7
- DIOPGL, RIOPGL
Generalized Laguerre Polynomial- 2.14
- MATHIEU FUNCTIONS
- 2.15
- OTHER SPECIAL FUNCTIONS
Chapter 3 SORTING AND RANKING
- 3.1
- INTRODUCTION
- 3.1.1
- Algorithms Used
- 3.1.1.1
- Sorting
- 3.1.1.2
- Ranking of a list of data
- 3.1.1.3
- Top-N extraction
- 3.1.1.4
- Merging two sorted lists of data
- 3.1.1.5
- Merging two sorted list of pairwise data
- 3.1.2
- Reference Bibliography
- 3.2
- SORTING
- 3.3
- RANKING
- 3.4
- MERGING
Chapter 4 ROOTS OF EQUATIONS
- 4.1
- INTRODUCTION
- 4.1.1
- Notes
- 4.1.2
- Algorithms Used
- 4.1.2.1
- Roots of a real coefficient algebraic equation
- 4.1.2.2
- The roots of complex coefficient algebraic equations
- 4.1.2.3
- The roots of real functions (initial value specified; derivative definition required)
- 4.1.2.4
- The roots of real functions (initial value specified; derivative definition not required)
- 4.1.2.5
- The roots of real functions (interval specification; derivative definition not required)
- 4.1.2.6
- All the roots of real functions (interval specification; derivative definition not required)
- 4.1.2.7
- The roots of complex functions (initial value specified; derivative definition not required)
- 4.1.2.8
- The roots of a set of simultaneous nonlinear equations (Jacobian matrix definition optional)
- 4.1.2.9
- The roots of a set of simultaneous nonlinear equations (Jacobian matrix definition not required)
- 4.1.3
- Reference Bibliography
- 4.2
- ALGEBRAIC EQUATIONS
- 4.3
- NONLINEAR EQUATIONS
- 4.3.1
- DLNRDS, RLNRDS
A Root of a Real Function (Initial Value Specified; Derivative Definition Required)- 4.3.2
- DLNRIS, RLNRIS
A Root of a Real Function (Initial Value Specified; Derivative Definition Not Required)- 4.3.3
- DLNRSS, RLNRSS
A Root of a Real Function (Interval Specified; Derivative Definition Not Required)- 4.3.4
- DLNRSA, RLNRSA
All Roots of a Real Function (Interval Specified; Derivative Definition Not Required)- 4.3.5
- ZLNCIS, CLNCIS
A Root of a Complex Function (Initial Value Specified; Derivative Definition Not Required)- 4.4
- SETS OF SIMULTANEOUS NONLINEAR EQUATIONS
Chapter 5 EXTREMUM PROBLEMS AND OPTIMIZATION
- 5.1
- INTRODUCTION
- 5.1.1
- Notes
- 5.1.2
- Algorithms Used
- 5.1.2.1
- Minimization of a function of one variable
- 5.1.2.2
- Minimization of a function of many variables
- 5.1.2.3
- Nonlinear least square method
- 5.1.2.4
- Minimization of a constrained linear function of several variables (linear constraints)
- 5.1.2.5
- Minimization of a constrained linear function of several variables including 0-1 variables
- 5.1.2.6
- Minimization of cost for flow in a network
- 5.1.2.7
- Minimization of cost for project scheduling
- 5.1.2.8
- Minimization of cost for transportation from supply place to demand place
- 5.1.2.9
- Minimization of a constrained quadratic function of several variables (linear constraints)
- 5.1.2.10
- Minimization of a generalized convex quadratic function of several variables (linear constraints)
- 5.1.2.11
- Minimization of an unconstrained 0-1 quadratic function of several variables
- 5.1.2.12
- Minimization of a constrained function of several variables
- 5.1.2.13
- Minimization of the distance between two nodes in a network
- 5.1.3
- Reference Bibliography
- 5.2
- MINIMIZATION OF A FUNCTION OF ONE VARIABLE WITHOUT CONSTRAINTS
- 5.3
- MINIMIZATION OF A FUNCTION OF MANY VARIABLES WITHOUT CONSTRAINTS
- 5.4
- MINIMIZATION OF THE SUM OF THE SQUARES OF A FUNCTION WITHOUT CONSTRAINTS
- 5.5
- MINIMIZATION OF A FUNCTION OF ONE VARIABLE WITH CONSTRAINTS
- 5.6
- MINIMIZATION OF A CONSTRAINED LINEAR FUNCTION OF SEVERAL VARIABLES (LINEAR PROGRAMMING)
- 5.6.1
- DMCLSN, RMCLSN
Minimization of a Linear Function of Several Variables (Linear Constraints)- 5.6.2
- DMCLAF, RMCLAF
Minimization of a Function of Many Variables (Linear Constraint Given by a Real Irregular Sparse Matrix)- 5.6.3
- DMCLMZ, RMCLMZ
Minimization of a Constrained Linear Function of Several Variables Including 0-1 Variables (Mixed 0-1 Programming)- 5.6.4
- DMCLMC, RMCLMC
Minimization of Cost for Flow in a Network (Minimal-Cost Flow Problem)- 5.6.5
- DMCLCP, RMCLCP
Minimization of Cost for Project Scheduling (Project Scheduling Problem)- 5.6.6
- DMCLTP, RMCLTP
Minimization of Cost for Transportation from Supply Place to Demand Place (Transportation Problem)- 5.7
- MINIMIZATION OF A QUADRATIC FUNCTION OF SEVERAL VARIABLES (QUADRATIC PROGRAMMING)
- 5.7.1
- DMCQSN, RMCQSN
Minimization of a Constrained Convex Quadratic Function of Several Variables (Linear Constraints)- 5.7.2
- DMCQLM, RMCQLM
Minimization of a Generalized Convex Quadratic Function of Several Variables (Linear Constraints)- 5.7.3
- DMCQAZ, RMCQAZ
Minimization of an Unconstrained 0-1 Quadratic Function of Several Variables (Unconstrained 0-1 Quadratic Programming Problem)- 5.8
- MINIMIZATION OF A CONSTRAINED FUNCTION OF SEVERAL VARIABLES (NONLINEAR PROGRAMMING)
- 5.9
- DISTANCE MINIMIZATION ON A GRAPH (SHORTEST PATH PROBLEM)
Appendix
- Appendix A
- GLOSSARY
- Appendix B
- MACHINE CONSTANTS USED IN ASL
- B.1
- Units for Determining Error
- B.2
- Maximum and Minimum Values of Floating Point Data