[ English | Japanese ]
ASL Shared Memory Parallel Functions (for Fortran)
Contents |
---|
Chapter 1 INTRODUCTION
- 1.1
- OVERVIEW
- 1.1.1
- Introduction to The Advanced Scientific Library ASL
- 1.1.2
- Distinctive Characteristics of ASL
- 1.2
- KINDS OF LIBRARIES
- 1.3
- ORGANIZATION
- 1.3.1
- Introduction
- 1.3.2
- Organization of Subroutine Description
- 1.3.3
- Contents of Each Item
- 1.4
- SUBROUTINE NAMES
- 1.5
- ASL SHARED MEMORY PARALLEL FUNCTIONS
- 1.5.1
- Overview of Shared Memory Parallel Functions
- 1.5.2
- Performance Improvement Due to Parallel Functions
- 1.5.3
- General Notes Concerning the Use of shared memory Parallel Functions
- 1.6
- NOTES
Chapter 2 BASIC MATRIX ALGEBRA
- 2.1
- INTRODUCTION
- 2.1.1
- Notes
- 2.1.2
- Algorithms Used
- 2.1.2.1
- Matrix Multiplication
- 2.2
- BASIC MATRIX ALGEBRA
- 2.2.1
- QAM1MU, PAM1MU
Multiplying Real Matrices (Two-Dimensional Array Type)- 2.2.2
- QAM1MM, PAM1MM
Multiplying Real Matrices (Two-Dimensional Array Type) (C=C± AB)- 2.2.3
- QAM1MT, PAM1MT
Multiplying Real Matrices (Two-Dimensional Array Type) (C=C± ABT)- 2.2.4
- QAM1TM, PAM1TM
Multiplying Real Matrices (Two-Dimensional Array Type) (C=C± ATB)- 2.2.5
- QAM1TT, PAM1TT
Multiplying Real Matrices (Two-Dimensional Array Type) (C=C± ATBT)- 2.2.6
- HAM1MM, GAM1MM
Multiplying Complex Matrices (Two-Dimensional Array Type) (Real Argument Type) (C=C± AB)- 2.2.7
- HAM1MH, GAM1MH
Multiplying Complex Matrices (Two-Dimensional Array Type) (Real Argument Type) (C=C± AB*)- 2.2.8
- HAM1HM, GAM1HM
Multiplying Complex Matrices (Two-Dimensional Array Type) (Real Argument Type) (C=C± A*B)- 2.2.9
- HAM1HH, GAM1HH
Multiplying Complex Matrices (Two-Dimensional Array Type) (Real Argument Type) (C=C± A*B*)- 2.2.10
- HAN1MM, GAN1MM
Multiplying Complex Matrices (Two-Dimensional Array Type) (Complex Argument Type) (C=C± AB)- 2.2.11
- HAN1MH, GAN1MH
Multiplying Complex Matrices (Two-Dimensional Array Type) (Complex Argument Type) (C=C± AB*)- 2.2.12
- HAN1HM, GAN1HM
Multiplying Complex Matrices (Two-Dimensional Array Type) (Complex Argument Type) (C=C± A*B)- 2.2.13
- HAN1HH, GAN1HH
Multiplying Complex Matrices (Two-Dimensional Array Type) (Complex Argument Type) (C=C± A*B*)Chapter 3 SIMULTANEOUS LINEAR EQUATIONS (DIRECT METHOD)
- 3.1
- INTRODUCTION
- 3.1.1
- Methods of using subroutines
- 3.1.2
- Notes
- 3.1.3
- Algorithms Used
- 3.1.3.1
- Solution of Simultaneous Linear Equations
- 3.1.3.2
- LU Decomposition (Gauss Method)
- 3.1.4
- Reference Bibliography
- 3.2
- REAL MATRIX (TWO-DIMENSIONAL ARRAY TYPE)
- 3.3
- COMPLEX MATRIX (TWO-DIMENSIONAL ARRAY TYPE) (REAL ARGUMENT TYPE)
- 3.4
- COMPLEX MATRIX (TWO-DIMENSIONAL ARRAY TYPE) (COMPLEX ARGUMENT TYPE)
- 3.5
- REAL SYMMETRIC MATRIX (TWO-DIMENSIONAL ARRAY TYPE) (UPPER TRIANGULAR TYPE)
- 3.6
- REAL SYMMETRIC MATRIX (TWO-DIMENSIONAL ARRAY TYPE, LOWER TRIANGULAR TYPE) (NO PIVOTING)
- 3.7
- HERMITIAN MATRIX (TWO-DIMENSIONAL ARRAY TYPE) (UPPER TRIANGULAR TYPE) (REAL ARGUMENT TYPE)
- 3.8
- HERMITIAN MATRIX (TWO-DIMENSIONAL ARRAY TYPE) (UPPER TRIANGULAR TYPE) (REAL ARGUMENT TYPE) (NO PIVOTING)
- 3.9
- HERMITIAN MATRIX (TWO-DIMENSIONAL ARRAY TYPE) (UPPER TRIANGULAR TYPE) (COMPLEX ARGUMENT
TYPE)- 3.10
- HERMITIAN MATRIX (TWO-DIMENSIONAL ARRAY TYPE) (UPPER TRIANGULAR TYPE) (COMPLEX ARGUMENT TYPE) (NO PIVOTING)
Chapter 4 SIMULTANEOUS LINEAR EQUATIONS (ITERATIVE METHOD)
- 4.1
- INTRODUCTION
- 4.1.1
- Notes
- 4.1.2
- Algorithms Used
- 4.1.2.1
- Nonstationary iterative method (for Symmetric Matrix only)
- 4.1.2.2
- Nonstationary iterative method (for Asymmetric Matrix)
- 4.1.2.3
- Preconditioned Iterative Method
- 4.1.2.4
- Preconditioning Methods
- 4.1.2.5
- Advanced Techniques for Improving Performance
- 4.1.3
- Reference Bibliography
- 4.2
- SPARSE MATRIX--NONSTATIONARY ITERATIVE METHODS (BASIC ITERATION METHOD ROUTINES)
- 4.2.1
- QXE010, PXE010
Positive Definite Symmetric Sparse Matrix (ELLPACK Format) (CG method)- 4.2.2
- QXE020, PXE020
Asymmetric Sparse Matrix (ELLPACK Format) (CGS method)- 4.2.3
- QXE030, PXE030
Asymmetric Sparse Matrix (ELLPACK Format) (BiCGSTAB method)- 4.2.4
- QXE040, PXE040
Asymmetric Sparse Matrix (ELLPACK Format) (GMRES (m) method)Chapter 5 EIGENVALUES AND EIGENVECTORS
- 5.1
- INTRODUCTION
- 5.1.1
- Notes
- 5.1.2
- Algorithms Used
- 5.1.2.1
- Transforming a real symmetric matrix to a real symmetric tridiagonal matrix
- 5.1.2.2
- Transforming a Hermitian matrix to a real symmetric tridiagonal matrix
- 5.1.2.3
- The Householder transformation by block algorithm
- 5.1.2.4
- QR method
- 5.1.2.5
- root-free QR method
- 5.1.2.6
- Bisection method
- 5.1.2.7
- Accumulation of similarity (unitary) transformation by block algorithm
- 5.1.2.8
- Inverse iteration method
- 5.1.2.9
- Generalized eigenvalue problem
- 5.1.3
- Reference Bibliography
- 5.2
- REAL SYMMETRIC MATRIX (TWO-DIMENSIONAL ARRAY TYPE) (UPPER TRIANGULAR TYPE)
- 5.3
- HERMITIAN MATRIX (TWO-DIMENSIONAL ARRAY TYPE) (UPPER TRIANGULAR TYPE) (REAL ARGUMENT TYPE)
- 5.4
- HERMITIAN MATRIX (TWO-DIMENSIONAL ARRAY TYPE) (UPPER TRIANGULAR TYPE) (COMPLEX ARGUMENT TYPE)
- 5.5
- GENERALIZED EIGENVALUE PROBLEM FOR A REAL SYMMETRIC MATRIX (TWO-DIMENSIONAL ARRAY TYPE) (UPPER TRIANGULAR TYPE) (Ax = λBx)
- 5.5.1
- QCGSAA, PCGSAA
All Eigenvalues and All Eigenvectors of a Real Symmetric Matrix (Generalized Eigenvalue Problem Ax = λBx, B: Positive)- 5.5.2
- QCGSAN, PCGSAN
All Eigenvalues of a Real Symmetric Matrix (Generalized Eigenvalue Problem Ax = λBx, B: Positive)- 5.5.3
- QCGSSS, PCGSSS
Eigenvalues and Eigenvectors of a Real Symmetric Matrix (Generalized Eigenvalue Problem Ax = λBx, B: Positive)- 5.5.4
- QCGSSN, PCGSSN
Eigenvalues of a Real Symmetric Matrix (Generalized Eigenvalue Problem Ax = λBx, B: Positive)- 5.6
- GENERALIZED EIGENVALUE PROBLEM FOR REAL SYMMETRIC MATRICES (TWO-DIMENSIONAL ARRAY TYPE) (UPPER TRIANGULAR TYPE) (ABx = λx)
- 5.7
- GENERALIZED EIGENVALUE PROBLEM FOR REAL SYMMETRIC MATRICES (TWO-DIMENSIONAL ARRAY TYPE) (UPPER TRIANGULAR TYPE) (BAx = λx)
- 5.8
- GENERALIZED EIGENVALUE PROBLEM (Az = λBz) FOR HERMITIAN MATRICES (TWO-DIMENSIONAL ARRAY TYPE) (UPPER TRIANGULAR TYPE) (REAL ARGUMENT TYPE)
- 5.9
- GENERALIZED EIGENVALUE PROBLEM (ABz = λz) FOR HERMITIAN MATRICES (TWO-DIMENSIONAL ARRAY TYPE) (UPPER TRIANGULAR TYPE) (REAL ARGUMENT TYPE)
- 5.10
- GENERALIZED EIGENVALUE PROBLEM (BAz = λz) FOR HERMITIAN MATRICES (TWO-DIMENSIONAL ARRAY TYPE) (UPPER TRIANGULAR TYPE) (REAL ARGUMENT TYPE)
Chapter 6 FOURIER TRANSFORMS AND THEIR APPLICATIONS
- 6.1
- INTRODUCTION
- 6.1.1
- Notes
- 6.1.2
- Algorithms Used
- 6.1.2.1
- Two-dimensional complex Fourier transform
- 6.1.2.2
- Two-dimensional real Fourier transform
- 6.1.2.3
- Three-dimensional complex Fourier transform
- 6.1.2.4
- Three-dimensional real Fourier transform
- 6.1.3
- Reference Bibliography
- 6.2
- MULTIPLE ONE-DIMENSIONAL COMPLEX FOURIER TRANSFORM (REAL ARGUMENT TYPE)
- 6.3
- MULTIPLE ONE-DIMENSIONAL COMPLEX FOURIER TRANSFORM (COMPLEX ARGUMENT TYPE)
- 6.4
- MULTIPLE ONE-DIMENSIONAL REAL FOURIER TRANSFORM
- 6.5
- TWO-DIMENSIONAL COMPLEX FOURIER TRANSFORM (REAL ARGUMENT TYPE)
- 6.6
- TWO-DIMENSIONAL COMPLEX FOURIER TRANSFORM (COMPLEX ARGUMENT TYPE)
- 6.7
- TWO-DIMENSIONAL REAL FOURIER TRANSFORM
- 6.8
- THREE-DIMENSIONAL COMPLEX FOURIER TRANSFORM (REAL ARGUMENT TYPE)
- 6.9
- THREE-DIMENSIONAL COMPLEX FOURIER TRANSFORM (COMPLEX ARGUMENT TYPE)
- 6.10
- THREE-DIMENSIONAL REAL FOURIER TRANSFORM
- 6.11
- CONVOLUTIONS
- 6.12
- CORRELATIONS
- 6.13
- POWER SPECTRUM ANALYSIS
Chapter 7 SORTING
- 7.1
- INTRODUCTION
- 7.1.1
- Notes
- 7.1.2
- Algorithms Used
- 7.1.3
- Reference Bibliography
- 7.2
- SORTING
Appendix
- Appendix A
- METHODS OF HANDLING ARRAY DATA
- A.1
- Methods of handling array data corresponding to matrix
- A.2
- Data storage modes
- A.2.1
- Real matrix (two-dimensional array type)
- A.2.2
- Complex matrix
- A.2.3
- Real symmetric matrix and positive symmetric matrix
- A.2.4
- Hermitian matrix
- A.2.5
- Random sparse matrix (For symmetric matrix only)
- A.2.6
- Random sparse matrix
- Appendix B
- MACHINE CONSTANTS USED IN ASL
- B.1
- Units for Determining Error
- B.2
- Maximum and Minimum Values of Floating Point Data